P11046 [蓝桥杯 2024 省 Java B] 星际旅行
题目背景
备注:原题(Java)时间限制 3.0s,空间限制 512 MB。
题目描述
小明国庆节准备去某星系进行星际旅行,这个星系里一共有 nnn 个星球,其中布置了 mmm 道双向传送门,第 iii 道传送门可以连接 aia_iai,bib_ibi 两颗星球(ai≠bia_i \neq b_iai=bi 且任意两颗星球之间最多只有一个传送门)。
他看中了一款 “旅游盲盒”,一共有 QQQ 个盲盒,第 iii 个盲盒里的旅行方案规定了旅行的起始星球 xix_ixi 和最多可以使用传送门的次数 yiy_iyi。只要从起始星球出发,使用传送门不超过规定次数能到达的所有星球都可以去旅行。
小明关心在每个方案中有多少个星球可以旅行到。小明只能在这些盲盒里随机选一个购买,他想知道能旅行到的不同星球的数量的期望是多少。
输入格式
输入共 m+Q+1m + Q + 1m+Q+1 行。
第一行为三个正整数 n,m,Qn, m, Qn,m,Q。
后面 mmm 行,每行两个正整数 aia_iai,bib_ibi。
后面 QQQ 行,每行两个整数 xix_ixi,yiy_iyi。
输出格式
输出共一行,一个浮点数(四舍五入保留两位小数)。
输入输出样例 #1
输入 #1
3 2 3
1 2
2 3
2 1
2 0
1 1
输出 #1
2.00
说明/提示
【样例解释】
- 第一个盲盒可以旅行到 1,2,31, 2, 31,2,3。
- 第二个盲盒可以旅行到 222。
- 第三个盲盒可以旅行到 1,21, 21,2。
所以期望是 (3+1+2)/3=2.00(3 + 1 + 2) / 3 = 2.00(3+1+2)/3=2.00。
【数据范围】
- 对于 20%20 \%20% 的评测用例,保证 n≤300n \leq 300n≤300。
- 对于 100%100 \%100% 的评测用例,保证 n≤1000n \leq 1000n≤1000,m≤min{n(n−1)2,5n}m \leq \min \left\{\dfrac{n(n - 1)}{2}, 5n\right\}m≤min{2n(n−1),5n},Q≤50000Q \leq 50000Q≤50000,0≤yi≤n0 \leq y_i \leq n0≤yi≤n,1≤xi≤n1 \leq x_i \leq n1≤xi≤n。
C++实现
#include <bits/stdc++.h>
using namespace std;
const int INF=(1LL<<31-1);
int n,m,q;
vector<int> g[1003];
int bfs(int x,int y){
int sum=1,dist[1003];//要算上x,初始化为1
queue<int> q;
q.push(x);
for(int i=1;i<=n;i++)
dist[i]=INF;//初始化dist数组
dist[x]=0;
while(q.size()){
int f=q.front(),len=g[f].size();
q.pop();
if(dist[f]==y)//如果为y,说明已经没有距离不超过y的未被访问的点
break;//跳出循环
for(int i=0;i<len;i++)
if(dist[g[f][i]]==INF)
sum++,dist[g[f][i]]=dist[f]+1,q.push(g[f][i]);
}
return sum;
}
int main(){
int ans=0;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=1;i<=q;i++){
int a,b;
scanf("%d%d",&a,&b);
ans+=bfs(a,b);//累加答案
}
printf("%.2lf",1.0*ans/q);
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容