求有向图中的最短路径(JAVA+DFS算法实现)
问题描述
给定一个有向图,如下图所示,求从1号顶点到5号顶点的最短路径。
输入数据格式为第一行输入顶点数和边数,从第二行开始每一行输入3个整数,分别代表连接顶点的边和权重。
例如:1 2 2,表示从1号顶点到2号顶点连接的边,权重为2。
Input:
5 8
1 2 2
1 5 10
2 3 3
2 5 7
3 1 4
3 4 4
4 5 5
5 3 3
Output:
9
算法实现
package test2;
import java.util.Scanner;
public class dfstest {
static int[][] edges=new int[100][100];
static int[] vertes=new int[100];
static int n,m,min=Integer.MAX_VALUE;
static Scanner scanner=new Scanner(System.in);
public static void main(String[] args) {
// TODO Auto-generated method stub
n=scanner.nextInt();
m=scanner.nextInt();
for (int i = 1; i <= n; i++) {//n个顶点
for (int j = 1; j <=m; j++) {//m条边
if (i==j) {
edges[i][j]=0;
}else {
edges[i][j]=Integer.MAX_VALUE;
}
}
}
for (int j = 1; j <=m; j++){//因为有m条边
int a=scanner.nextInt();
int b=scanner.nextInt();
int c=scanner.nextInt();
edges[a][b]=c;
}
vertes[1]=1;
dfs(1,0);
System.out.println(min);
}
public static void dfs(int cur,int dis) {//cur为当前顶点,dis为经过路径长度
if (dis>min) {
return;
}
/**
* 判断是否达到最后一个结点,更新最小值,返回
* */
if (cur==n) {
if (dis<min) {
min=dis;
return;
}
}
/**
* 当前点到其他各点之间可连通但是还未添加进来时,遍历执行
* */
for (int i = 1; i <=n; i++) {
if (edges[cur][i]!=Integer.MAX_VALUE&&vertes[i]==0) {
vertes[i]=1;
dfs(i,dis+edges[cur][i]);
//回溯
vertes[i]=0;
}
}
return;
}
}
————————————————
版权声明:本文为CSDN博主「梅森上校」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/seagal890/article/details/96048023
DFS求迷宫最小路径(dfs用递归一步步试探,在所有路径中选出最短的一条路径)
可能是求最长路径,题目忘了,原理应该一致
package test2;
import java.util.Scanner;
public class dfsmg {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
String[] strn=in.nextLine().split(",");
int M=Integer.valueOf(strn[0]);
int N=Integer.valueOf(strn[1]);
int[][] a=new int[M][N];
for (int i = 0; i < a.length; i++) {
String[] str=in.nextLine().split(",");
for (int j = 0; j < a[0].length; j++) {
a[i][j]=Integer.valueOf(str[j]);
}
}//输入矩阵
int max=0;
int[][] b=new int[][]{{-1,0},{0,1},{1,0},{0,-1}};//负责上下左右
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[0].length; j++) {
if (a[i][j]==1) {
int res=dfs(i,j,M,N,a,b);
max=Math.max(max, res);
}
}
}
System.out.print(max);
}
}
private static int dfs(int i, int j, int m, int n, int[][] edges,
int[][] sxzy) {
// TODO Auto-generated method stub
int num=1;
edges[i][j]=0;//
int k=0;
while( k < 4) {
int i2=i+sxzy[k][0];//-1,0,1,0,上下移
int j2=j+sxzy[k][1];//0,1,0,-1,左右移
if (pd(i2,j2,m,n)&&edges[i2][j2]==1) {
num=num+dfs(i2, j2, m, n, edges, sxzy);
}
k++;
}
return num;
}
private static boolean pd(int i2, int j2, int m, int n) {
// TODO Auto-generated method stub
return j2>=0&&i2>=0&&i2<m&&j2<n;
}
}
需要输入起点终点
package test2;
import java.util.Scanner;
public class maybeDfsx1y1{
static int c=Integer.MAX_VALUE;//步数
static int x1,y1,x2,y2;//起点坐标终点坐标
static int[][] sxzy={{-1,0},{1,0},{0,-1},{0,1}};//上下左右移动
static int[][] mg={{0,0,1,1,1},
{0,0,1,1,1},
{0,1,0,1,1},
{1,0,1,1,1},
{0,0,0,0,0}
};//迷宫
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner scanner=new Scanner(System.in);
x1=scanner.nextInt();
y1=scanner.nextInt();
x2=scanner.nextInt();
y2=scanner.nextInt();
dfs(x1,y1,0);
System.out.println(c);
}
static void dfs(int x,int y,int dis){
int xx=0,yy=0;
if (x==x2&&y==y2) {
c=Math.min(c, dis);
return;
}
mg[x][y]=1;
for (int k = 0; k < 4; k++) {
xx=x+sxzy[k][0];
yy=x+sxzy[k][1];
if (xx<0||yy<0||xx>=5||yy>=5||mg[xx][yy]==1) {
continue;
}
dfs(xx, yy, dis+1);
mg[xx][yy]=0;
}
}
}