- Rotate Function
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), …, F(n-1).
Example
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Notice
n is guaranteed to be less than 10^5.
解法1:
用两个A连起来。时间复杂度O(n^2)。
class Solution {
public:
/**
* @param A: an array
* @return: the maximum value of F(0), F(1), ..., F(n-1)
*/
int maxRotateFunction(vector<int> &A) {
int len = A.size();
if (len <= 1) return 0;
int maxSum = INT_MIN;
vector<int> newA = A;
newA.insert(newA.end(), A.begin(), A.end());
for (int i = 0; i <= len; ++i) {
int sum = 0;
for (int j = 0; j < len; ++j) {
sum += newA[i + j] * j;
}
maxSum = max(maxSum, sum);
}
return maxSum;
}
};
解法2:
跟解法1差不多,只是不用一个新数组。时间复杂度O(n^2)。
class Solution {
public:
/**
* @param A: an array
* @return: the maximum value of F(0), F(1), ..., F(n-1)
*/
int maxRotateFunction(vector<int> &A) {
int len = A.size();
if (len <= 1) return 0;
int maxSum = INT_MIN;
for (int i = 0; i <= len; ++i) {
int sum = 0;
for (int j = 0; j < len; ++j) {
int index = (i + j) >= len ? (i + j) % len : (i + j);
sum += A[index] * j;
}
maxSum = max(maxSum, sum);
}
return maxSum;
}
};
解法3:参考九章。这个解法好。时间复杂度O(n)。
思路:
4 3 2 6 4 3 2 6
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
从下往上看:
f[0] = 4 * 0 + 3 * 1 + 2 * 2 + 6 * 3
f[1] = 4 * 1 + 3 * 2 + 2 * 3 + 6 * 0 = f[0] + sum - 6 * 4
f[2] = 4 * 2 + 3 * 3 + 2 * 0 + 6 * 1 = f[1] + sum - 2 * 4
…
可得
f[i] = f[i - 1] + sum - len * A[len - i];
class Solution {
public:
/**
* @param A: an array
* @return: the maximum value of F(0), F(1), ..., F(n-1)
*/
int maxRotateFunction(vector<int> &A) {
int len = A.size();
if (len <= 1) return 0;
int sum = 0;
vector<int> f(len, 0);
for (int i = 0; i < len; ++i) {
sum += A[i];
f[0] += i * A[i];
}
int maxResult = f[0];
for (int i = 1; i < len; ++i) {
f[i] = f[i - 1] + sum - len * A[len - i];
maxResult = max(maxResult, f[i]);
}
return maxResult;
}
};