前言:
笔者在学习SVM的过程中找了很多书籍、资料以及学习笔记,但是感觉看起来都云里雾里莫名其妙,始终不得要领,最近在看《统计学习方法》---李航---清华大学出版社---ISBN978-7-302-27595-4一书时,发现其在第7章-支持向量机中对SVM的讲解犹如行云流水,SVM进行深入浅出的讲解,对新入坑的非常友好,能够快速的掌握SVM核心知识,故特将笔者自己的学习心得制作为本图。
本图特地模仿人脑视觉皮层对事物的处理模型,按照 事物本身的宏观表现---》抽象出特定的问题描述---》套用SVM固定概念框架---》逆向解析复杂问题简化为简单问题的思路---》最终达到能够适配所有表象的数学抽象原理 这种逐层抽象模型对SVM进行了分解:
编后:
严格来讲,对SVM的翻译——支持向量机并不准确,支撑向量机会更加贴切:样本空间中的重要少数样本支撑起了间距最大化判定区间,故上图中均是“支撑向量机”。
对于宏观问题由繁向简的解决问题思路:我们可以将复杂对象的分类转化为高维特征空间【希尔伯特空间】的分类,对于这种高维特征空间我们暂时无法进行直观的想象,但是根据正定核的定义以及相关核函数技巧【已经验证过的核函数:多项式核函数、高斯核函数、字符串核函数】将高维特征空间映射到低维的抽样样本空间,且无需知道具体的映射规则就可以求得