机器学习sklearn的模型上线部署工作总结

一、机器学习模型上线两种方式

机器学习模型上线主要分为两种方式,一种是基于HTTP服务方式,这种方式需要在生产环境上部署相应的python环境以及相应的python机器学习包,这种方式好处在于将数据预处理部分和模型部分(保存成pkl文件)都能一起部署在HTTP服务中,缺点则是需要在生产上部署相应的python环境;而另一种方式则是通过PMML方式将机器学习模型打包给java环境使用,这种方法好处在于能使生产环境脱离python环境,只需要有java环境即可,但是最大的缺点就是不能将数据预处理部分自己编写的数据处理函数打包成PMML文件,因为PMML文件是用sklearn2pmml导出的,因此它只认识sklearn家族中的函数和模型算法。

二、HTTP服务上线脚本

#
#!coding=UTF-8    
from http.server import HTTPServer,BaseHTTPRequestHandler    
import io,shutil,urllib    
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

def companyinformationinput(companyname,entType,termDuration,startDuration,numberEmployers,numberEmployees,numberBranches,ratioProvident):
    import numpy as np
    import pandas as pd
    try:
        predData=pd.DataFrame()
        predData['企业名称(entName)']=[companyname]
        predData['企业类型(entType)']=[entType]
        predData['营业时长']=[int(termDuration)]
        predData['成立时长']=[int(startDuration)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值