一、机器学习模型上线两种方式
机器学习模型上线主要分为两种方式,一种是基于HTTP服务方式,这种方式需要在生产环境上部署相应的python环境以及相应的python机器学习包,这种方式好处在于将数据预处理部分和模型部分(保存成pkl文件)都能一起部署在HTTP服务中,缺点则是需要在生产上部署相应的python环境;而另一种方式则是通过PMML方式将机器学习模型打包给java环境使用,这种方法好处在于能使生产环境脱离python环境,只需要有java环境即可,但是最大的缺点就是不能将数据预处理部分自己编写的数据处理函数打包成PMML文件,因为PMML文件是用sklearn2pmml导出的,因此它只认识sklearn家族中的函数和模型算法。
二、HTTP服务上线脚本
#
#!coding=UTF-8
from http.server import HTTPServer,BaseHTTPRequestHandler
import io,shutil,urllib
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def companyinformationinput(companyname,entType,termDuration,startDuration,numberEmployers,numberEmployees,numberBranches,ratioProvident):
import numpy as np
import pandas as pd
try:
predData=pd.DataFrame()
predData['企业名称(entName)']=[companyname]
predData['企业类型(entType)']=[entType]
predData['营业时长']=[int(termDuration)]
predData['成立时长']=[int(startDuration)