基于卷积神经网络的KBC

该文章介绍了一种将卷积神经网络应用于知识图谱完成的新模型。通过将三元组表示为矩阵并使用1×3卷积核进行卷积操作,提取关系特征,形成嵌入向量。这些特征向量与权重向量进行内积运算,用于评估三元组的有效性。最终,模型通过优化损失函数来完成知识图谱的补全任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于卷积神经网络的KBC

原文:

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network

摘要

本篇文章是将图片卷积的概念扩展并应用于知识图谱点的嵌入表示,简单来说,是对知识图谱中的每一个三元组组合而成的嵌入矩阵(vh,vr,vt)∈Rk×3,(v_h,v_r,v_t)\in R^{k \times 3},(vh,vr,vt)Rk×3,k表示的是嵌入向量的维度,与不同的1×31\times31×3的filters进行卷积运算,来提取嵌入三元组相同维度的关系。得到多个feature maps,然后将这些feature maps拼接在一起,得到三元组的一个嵌入向量表示,该嵌入表示在于一个权重向量做内积,得到的数值来对三元组进行打分,表示三元组的有效与否。

提出的方法

在这里插入图片描述
将知识图谱的三元组(vh,vr,vt)(v_h,v_r,v_t)(vh,vr,vt)表示为矩阵的形式,A=[vh,vr,vt]∈Rk×3A=[v_h,v_r,v_t] \in R^{k\times3}A=[vh,vr,vt]Rk×3,卷积核ω∈R1×3\omega \in R^{1\times3}ωR1×3ω\omegaω与A的每一行进行卷积运算,会得到一个k维的feature map,记为v=[v1,v2,...,vk]∈Rkv=[v_1,v_2,...,v_k]\in R_kv=[v1,v2,...,vk]Rk
vi=g(ω⋅Ai,:+b)v_i=g(\omega \cdot A_{i,:}+b)vi=g(ωAi,:+b)
其中b是偏置项,g是激活函数。

Ω\OmegaΩτ=∣Ω∣\tau=|\Omega|τ=Ω分别表示卷积核集合和卷积核的个数。分别去和A进行卷积运算,运算结果直接拼接起来,得到一个向量∈Rτk×1\in R^{\tau k \times 1}Rτk×1,再和一个权重向量w∈Rτk×1w\in R^{\tau k \times 1}wRτk×1做内积运算,得到的值是对该三元组的打分:
f(h,r,t)=concat(g([vh,vr,vt]×Ω))T⋅wf(h,r,t)=concat(g([v_h,v_r,v_t]\times \Omega))^T\cdot wf(h,r,t)=concat(g([vh,vr,vt]×Ω))Tw
对于所有的三元组共享Ω\OmegaΩwww参数

最后,目标函数如下:
L=∑(h,r,t)∈G∪G′log(1+exp(−l(h,r,t)⋅f(h,r,t)))+λ2∣∣w∣∣22L=\sum_{(h,r,t) \in {G \cup G'}}log(1+exp(-l_(h,r,t) \cdot f(h,r,t)))+\frac{\lambda} {2} ||w||_2^2L=(h,r,t)GGlog(1+exp(l(h,r,t)f(h,r,t)))+2λw22

[1]: A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值