26、双目标模型启发的测试套件最小化贪心算法及对象类型层次分析

双目标模型启发的测试套件最小化贪心算法及对象类型层次分析

测试套件最小化算法

在软件测试中,测试套件的冗余问题会增加测试成本和时间。为了解决这个问题,提出了一种双目标贪心算法(Bi - Objective Greedy, BOG)用于测试套件最小化。

该算法的核心思想是选择既能在执行路径上具有唯一性,又能在故障检测方面有效的测试用例。具体操作依赖于测试用例 - 需求矩阵,该矩阵展示了测试用例和测试需求之间的映射关系,元素为 1 或 0,分别表示满足或不满足需求。

算法主要步骤如下:
1. 步骤 1 :将测试用例 - 需求矩阵与其转置矩阵相乘,结果存储在 multiplied 矩阵中。同时,计算 sumColumns 向量,该向量表示一个测试用例与其他测试用例在需求覆盖上的重叠数量。
2. 步骤 2 :重复选择最优测试用例,直到所有测试需求都得到满足。在每次迭代中,从 multiplied 矩阵中选择具有最大对角值的测试用例放入 maxList ,选择 sumColumns 中具有最小值的测试用例放入 minList 。然后从这两个列表的交集中选择一个测试用例。如果交集为空,则调用 selectOptimumTestCase 函数选择一个接近最优的测试用例。
3. 步骤 3 :更新 selected 向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值