代码性能分析与优化指南
1. 过早优化的风险
优化通常被认为是一种良好的实践,但当优化行为主导了软件解决方案的设计决策时,情况就并非如此了。开发者在开始编写新软件时,常见的陷阱之一就是过早优化。这种情况下,最终结果往往与预期的优化代码背道而驰,可能包含不完整的解决方案,甚至因优化驱动的设计决策而产生错误。
一般来说,如果没有对代码进行测量(分析),优化可能不是最佳选择。正确的做法是,先专注于编写可读性高的代码,然后进行性能分析,找出真正的瓶颈,最后再进行实际的优化。
2. 运行时间复杂度
在对代码进行性能分析和优化时,理解运行时间复杂度(RTC)及其在代码优化中的应用至关重要。RTC 用于量化给定算法的执行时间,通过对任意输入下代码执行时间的数学近似来实现。它是一种近似值,有助于对相似算法进行分组。
RTC 使用大 O 符号表示。在数学中,大 O 符号用于表示函数在项趋于无穷大时的极限行为。在计算机科学中,我们可以用它来表示描述执行时间的函数的极限行为。这一符号能让我们大致了解算法处理任意大输入所需的时间,但无法提供精确的执行时间,精确时间需要对源代码进行更深入的分析。
常见的运行时间复杂度分组如下:
- 常数时间 - O(1) :表示操作的执行时间始终恒定,与输入大小无关。例如:
- 判断一个数是奇数还是偶数:
if number % 2:
odd = True
else:
odd = False
- 向标准输出