复矩阵上的完全正线性映射与量子信道中的纠缠传输
在当今的数学和量子信息领域,复矩阵上的完全正线性映射以及量子信道中纠缠态的传输是两个备受关注的重要课题。它们不仅在理论研究中具有重要意义,还在实际应用中展现出巨大的潜力。接下来,我们将深入探讨这两个主题,为大家揭示其中的奥秘。
1. 复矩阵上的完全正线性映射
1.1 基本定义与概念
在复矩阵的世界里,线性映射是一个核心概念。对于从(n)阶复矩阵空间(\mathfrak{M} n)到(m)阶复矩阵空间(\mathfrak{M}_m)的线性映射(\Phi),如果它满足一定条件,就被称为完全正线性映射。具体来说,(\Phi)是完全正的当且仅当它可以表示为(\Phi(A)=\sum {i}V_i^*AV_i)的形式,其中(V_i)是(n\times m)的矩阵。
为了更好地理解这些概念,我们需要明确一些基本的矩阵定义。对于复矩阵(A),(A^ )表示(A)的复共轭转置。如果一个方阵(A)等于它的转置,那么(A)是对称矩阵;如果(A = A^ ),则(A)是厄米特矩阵;如果(A)是厄米特矩阵且其特征值非负,那么(A)是正(半定)矩阵。我们用(\mathfrak{M} n)表示所有(n\times n)复矩阵的集合,克罗内克符号(\delta {jk})在(j = k)时等于(1),在(j\neq k)时等于(0),因此(I = (\delta_{jk}) {j,k = 1}^n)是(n\times n)的单位矩阵。(E {jk}\in\mathfrak{M}_n)是在((j,k))位置为(1),其余位置为(0)的(n\times n