社会选择与博弈论基础概念及应用解析
1. 基础符号表示
在相关研究中,我们通常用大写字母表示集合,例如 (A = {a_1, a_2, \cdots}) ;用粗体字母表示向量,例如 (\mathbf{a} = (a_1, a_2, \cdots))。符号 (\mathbf{a} {-i}) 表示向量 (\mathbf{a}) 中除了第 (i) 个元素之外的所有元素,即 (\mathbf{a} {-i} = (a_1, \cdots, a_{i - 1}, a_{i + 1}, \cdots)) 。对于指标集 (I) 的子集,(\mathbf{a}_{-I}) 包含除了 (i \in I) 对应的 (a_i) 之外的所有元素。
对于有限集 (X) ,我们用 (R(X)) 表示 (X) 上所有弱序的集合,用 (L(X)) 表示 (X) 上所有线性(严格)序的集合。对于 (L \in L(X)) ,(\text{top}(L)) 表示 (L) 中的第一个元素。我们还用 (U(X)) 表示所有形式为 (U: X \to \mathbb{R}) 的函数的集合。对于整数 (k) ,我们记 ([k] = {1, \cdots, k}) 和 ([k]_0 = {0, 1, \cdots, k}) 。
2. 社会选择相关概念
2.1 投票场景定义
一个投票场景由 (m) 个候选人(或替代方案)的集合 (A) 、 (n) 个选民的集合 (N) 以及偏好配置 (R = (R_1, \cdots, R_n)) 定义,其中每个 (R_i \in R(A)) 。对于 (a, b \in A) ,(i \in N) ,如果选民 (i) 更喜