19、卷积神经网络的拓展与创新:从宽网络到替代连接模式

卷积神经网络的拓展与创新:从宽网络到替代连接模式

1. ResNeXt:宽残差神经网络

ResNeXt引入了并行组卷积中的“分割 - 变换 - 合并”模式,在不增加网络深度的情况下提高了残差网络的准确性。其代码实现如下:

shortcut = x                                                               
x = Conv2D(filters_in, (1, 1), strides=(1, 1), padding='same')(shortcut)   
x = BatchNormalization()(x)
x = ReLU()(x)
filters_card = filters_in // cardinality   
groups = []                                                     
for i in range(cardinality):                                    
    group = Lambda(lambda z: z[:, :, :, i * filters_card:i *    
                             filters_card + filters_card])(x)  
    groups.append(Conv2D(filters_card, (3, 3), strides=(1, 1),  
                         padding='same')(group))          
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值