卷积神经网络的拓展与创新:从宽网络到替代连接模式
1. ResNeXt:宽残差神经网络
ResNeXt引入了并行组卷积中的“分割 - 变换 - 合并”模式,在不增加网络深度的情况下提高了残差网络的准确性。其代码实现如下:
shortcut = x
x = Conv2D(filters_in, (1, 1), strides=(1, 1), padding='same')(shortcut)
x = BatchNormalization()(x)
x = ReLU()(x)
filters_card = filters_in // cardinality
groups = []
for i in range(cardinality):
group = Lambda(lambda z: z[:, :, :, i * filters_card:i *
filters_card + filters_card])(x)
groups.append(Conv2D(filters_card, (3, 3), strides=(1, 1),
padding='same')(group))