23、移动卷积神经网络:MobileNet v2与SqueezeNet解析

移动卷积神经网络:MobileNet v2与SqueezeNet解析

1. MobileNet v2架构
1.1 整体架构概述

MobileNet v2的宏观架构由四个倒置残差组和一个最终的1×1线性卷积层组成。每个倒置残差组的滤波器数量相对于前一组会增加,同时通过元参数宽度乘数α(alpha)来减少每组的滤波器数量,从而降低计算成本。最终的1×1卷积层进行线性投影,将最终特征图的数量增加四倍,达到2048。

组件 描述
倒置残差组 滤波器数量逐组增加,受宽度乘数α影响
1×1线性卷积层 线性投影,增加最终特征图数量
1.2 茎(Stem)组件

茎组件与v1类似,但在初始的3×3卷积层之后,没有像v1那样跟随深度卷积块。这使得粗粒度特征提取的表示能力可能不如v1中的双3×3卷积堆叠,但模型在准确率上却优于v1。

graph LR
    A[输入] --> B(3×3卷积层)
    B --> C[输出]
1.3 学习器(Learner)组件

学习器组件由七个倒置残差组和一个1×1线性卷积层组成。每个倒置残差组包含两个或更多的倒置残

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值