移动卷积神经网络:MobileNet v2与SqueezeNet解析
1. MobileNet v2架构
1.1 整体架构概述
MobileNet v2的宏观架构由四个倒置残差组和一个最终的1×1线性卷积层组成。每个倒置残差组的滤波器数量相对于前一组会增加,同时通过元参数宽度乘数α(alpha)来减少每组的滤波器数量,从而降低计算成本。最终的1×1卷积层进行线性投影,将最终特征图的数量增加四倍,达到2048。
组件 | 描述 |
---|---|
倒置残差组 | 滤波器数量逐组增加,受宽度乘数α影响 |
1×1线性卷积层 | 线性投影,增加最终特征图数量 |
1.2 茎(Stem)组件
茎组件与v1类似,但在初始的3×3卷积层之后,没有像v1那样跟随深度卷积块。这使得粗粒度特征提取的表示能力可能不如v1中的双3×3卷积堆叠,但模型在准确率上却优于v1。
graph LR
A[输入] --> B(3×3卷积层)
B --> C[输出]
1.3 学习器(Learner)组件
学习器组件由七个倒置残差组和一个1×1线性卷积层组成。每个倒置残差组包含两个或更多的倒置残