25、移动卷积神经网络与自编码器:原理、部署与应用

移动卷积神经网络与自编码器:原理、部署与应用

1. 移动卷积神经网络

在移动设备上部署卷积神经网络模型时,面临着内存受限的挑战。为了解决这个问题,研究人员提出了多种技术,包括模型重构、量化和使用TF Lite进行模型转换和预测。

1.1 模型重构
  • MobileNet v1 :通过使用深度可分离卷积和网络瘦身技术,实现了在内存受限设备上以AlexNet的准确率运行模型。
  • MobileNet v2 :将残差块重新设计为倒置残差块,进一步减少了内存占用并提高了准确率。
  • SqueezeNet :引入了使用元参数配置组和块属性的计算高效宏观架构搜索概念。
  • ShuffleNet v1 :通过重构和通道洗牌,展示了在如微控制器等极度受限内存设备上运行模型的能力。

在消融研究中,作者发现复杂度与准确率的最佳权衡是减少因子为1(无减少),并将组分区数设置为8。以下是ShuffleNet中通道分组和洗牌的代码示例:

x = Lambda(lambda z: K.reshape(z, [-1, height, width, n_partitions, 
                                   grp_in_channels]))(x)   
x = Lambda(lambda z: K.permute_dimension
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值