超参数调优:从权重初始化到搜索策略
在深度学习模型的训练中,超参数调优是提升模型性能的关键环节。本文将深入探讨权重初始化的方法,以及不同的超参数搜索策略,帮助你找到最优的超参数组合,让模型达到最佳性能。
权重初始化方法
在模型训练前,权重的初始化至关重要。这里将介绍两种不同的权重初始化方法:基于彩票假设的方法和数值稳定的预热方法。
基于彩票假设的权重初始化
以下是实现基于彩票假设的权重初始化的代码:
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
def make_model():
''' make an instance of the model '''
bottom = ResNet50(include_top=False, weights=None,
input_shape=(32, 32,