深度学习中的模型应用与迁移学习
1. 预构建模型概述
在深度学习领域,预构建模型和预训练模型是两个重要的概念。预构建模型是基于先进架构的现有模型,其输入形状和任务组可重新配置,但权重未经过训练,常用于从头开始训练模型,具有可重用和可重新配置以适应数据集和任务的优点,但架构可能未针对特定数据集或任务进行调整,导致模型效率和准确性较低。预训练模型则是权重已经在其他数据集(如图像Net数据集)上进行了预训练的模型,可用于即插即用的预测或迁移学习,能重用表征学习,更快地使用更少的数据训练新的数据集或任务,但预训练的表征学习可能不适用于特定数据集或任务的领域。
2. TensorFlow Hub预构建模型
TensorFlow Hub是一个开源的公共存储库,包含大量的预构建和预训练模型,比TF.Keras更加广泛。TF.Keras的预构建/预训练模型适合学习和练习迁移学习,但在生产应用中提供的模型有限。TF Hub则拥有更多的预构建先进架构、广泛的任务类别、特定领域的预训练权重以及除TensorFlow组织直接提供的模型之外的公众提交的模型。
TF Hub为图像分类提供了两种版本的模型:
- 用于对特定类别进行图像分类的模块,与预训练模型的过程相同。
- 用于提取图像特征向量(瓶颈值)的模块,可用于自定义图像分类器。
要使用TF Hub,需要先安装 tensorflow_hub
Python模块:
pip install tensorflow_hub
在Python脚本中,通过导入