迁移学习与数据分布:原理、应用与挑战
1. 迁移学习概述
迁移学习是一种在机器学习中广泛应用的技术,它允许我们利用在一个领域中学习到的知识,应用到另一个相关领域中,从而减少训练时间和数据需求。以下将详细介绍迁移学习的不同方法和相关概念。
1.1 跨领域迁移学习
在计算机视觉中,我们可以使用预训练的模型来进行迁移学习。以下是一个使用 ResNet50
模型进行跨领域迁移学习的示例代码:
from tensorflow.keras.applications import ResNet50
from tensorflow.keras import Model
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import load_model
# 加载 ResNet50 模型,不包含顶部的全连接层
model = ResNet50(include_top=False, pooling=None, input_shape=(100, 100, 3))
# 保存基础模型
model.save('produce-model')
# 添加分类器
output = Flatten(name='bottleneck')(model.output)
output = Dense(20, activation='softmax')(output)
# 保存训练好的模型权重
model.save_weights('produce-weights')
# 重新加载基础模型和训