36、数据处理与预处理:TensorFlow实战指南

数据处理与预处理:TensorFlow实战指南

1. 数据管道构建

在构建数据管道时,我们可以从内存中的数据源(如NumPy或TensorFlow张量格式)构建,也可以从磁盘上的数据源使用TFRecords构建。

首先,我们来看一个从内存数据源构建数据管道并训练模型的示例:

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, ReLU, Flatten, Dense

model = Sequential()
model.add(Conv2D(16, (3,3), strides=1, padding='same', input_shape=(32, 32, 3)))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Conv2D(32, (3,3), strides=1, padding='same'))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['acc'])

batches = 50000 // 128
model.fit(dataset, ste
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值