42、机器学习模型的部署与评估:从基础到前沿

机器学习模型的部署与评估:从基础到前沿

在机器学习领域,模型的部署和评估是确保模型在实际生产环境中有效运行的关键环节。本文将详细介绍批量预测、A/B 测试、负载均衡、持续评估等重要概念,并探讨机器学习生产管道设计的演变。

批量预测

在 TFX 中,BulkInferrer 组件可执行批量预测服务,也就是批量推理。以下是使用当前训练好的模型进行批量预测的最小参数示例代码:

from tfx.components import BulkInferrer
bulk_inferrer = BulkInferrer(examples=examples_gen.outputs['examples'], 
                             model=trainer.outputs['model'],            
                             inference_result=location                  
                            )

其中, examples 是用于预测的示例,来自 ExampleGen 组件的实例; model 是用于批量预测的模型,即当前训练好的模型; inference_result 是存储批量预测结果的位置。

如果仅在当前训练的模型是受祝福模型(由 model_blessing 参数指定)时才进行批量预测,示例代码如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值