机器学习模型的部署与评估:从基础到前沿
在机器学习领域,模型的部署和评估是确保模型在实际生产环境中有效运行的关键环节。本文将详细介绍批量预测、A/B 测试、负载均衡、持续评估等重要概念,并探讨机器学习生产管道设计的演变。
批量预测
在 TFX 中,BulkInferrer 组件可执行批量预测服务,也就是批量推理。以下是使用当前训练好的模型进行批量预测的最小参数示例代码:
from tfx.components import BulkInferrer
bulk_inferrer = BulkInferrer(examples=examples_gen.outputs['examples'],
model=trainer.outputs['model'],
inference_result=location
)
其中, examples
是用于预测的示例,来自 ExampleGen 组件的实例; model
是用于批量预测的模型,即当前训练好的模型; inference_result
是存储批量预测结果的位置。
如果仅在当前训练的模型是受祝福模型(由 model_blessing
参数指定)时才进行批量预测,示例代码如