ORB_SLAM2 frame.cc 中 实现去畸变函数 (UnditortPoints)

本文介绍了一个用于图像处理的去畸变函数UndistortKeyPoints的实现细节,该函数使用OpenCV库对图像特征点进行畸变校正,适用于稀疏点集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

frame.cc 中 实现去畸变函数 (UnditortPoints)

在这里插入图片描述此函数常作用于稀疏点集的去畸变
src: 输入的图像点坐标 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or vector )
dst: 输出的去畸变之后的坐标 1xN/Nx1 2-channel or vector
cameraMatrix: 相机内参矩阵
distCoeffs: 相机畸变系数

void Frame::UndistortKeyPoints()
{
    // 如果没有图像是矫正过的,没有失真
    if(mDistCoef.at<float>(0)==0.0)
    {
        mvKeysUn=mvKeys;
        return;
    }

    // Fill matrix with points
    // N为提取的特征点数量,将N个特征点保存在N*2的mat中
    cv::Mat mat(N,2,CV_32F);
    for(int i=0; i<N; i++)
    {
        mat.at<float>(i,0)=mvKeys[i].pt.x;
        mat.at<float>(i,1)=mvKeys[i].pt.y;
    }

    // Undistort points
    // 调整mat的通道为2,矩阵的行列形状不变
    mat=mat.reshape(2);
    cv::undistortPoints(mat,mat,mK,mDistCoef,cv::Mat(),mK); // 用cv的函数进行失真校正
    mat=mat.reshape(1);

    // Fill undistorted keypoint vector
    // 存储校正后的特征点
    mvKeysUn.resize(N);
    for(int i=0; i<N; i++)
    {
        cv::KeyPoint kp = mvKeys[i];
        kp.pt.x=mat.at<float>(i,0);
        kp.pt.y=mat.at<float>(i,1);
        mvKeysUn[i]=kp;
    }
}

reshape 函数 : 变换二维矩阵的行列数或是channel数, 但不复制任何数据
—没有任何数据被加入新矩阵或从新矩阵中舍去, rows()cols()channels() 需保持一致
—O(1) 无数据拷贝
代码中, 将N
2 矩阵 先变为N
12 畸变校正后 再变回N2

<think>好的,我需要帮助用户了解如何安装、配置和使用ORB-SLAM2进行开发或研究。首先,用户的问题是关于ORB-SLAM2的使用教程、源码解析和安装配置。根据用户提供的引用内容,我需要整合这些信息,并按照系统级指令的要求来组织回答。 首先,安装配置部分。用户提供的引用[2]提到了编译ORB-SLAM2需要处理第三方库DBoW2和g2o,并且要解压ORB词典。我需要详细说明这些步骤,包括依赖项的安装、编译命令等。同时,要确保使用正确的代码块格式,比如用shell脚本示例。 然后是源码解析部分。引用[1]、[3]、[4]涉及到了KeyFrame DataBase类、System类、Frame类以及跟踪方法如TrackWithMotionModel。需要分模块讲解这些核心组件,并适当引用对应的源码文件和函数,比如mono_tum.cc和System.cc。 接下来是使用教程部分,需要涵盖数据集运行(如TUM数据集,引用[2]和[3]提到的)、自定义数据集适配和参数调整。要给出具体的命令行示例,比如运行TUM数据集的命令,并指出可能需要修改的地方。 相关问题部分,根据用户提供的示例,生成与ORB-SLAM2相关的开发或研究问题,比如安装问题、关键算法、性能优化和应用场景等。这些问题需要自然地从回答内容中引出,方便用户进一步探索。 同时,要注意所有数学表达式用$...$格式,比如相机投影模型中的公式。确保回答结构清晰,分步骤说明,并在引用处添加标识符,如[^1]、[^2]等。需要检查LaTeX语法是否正确,比如积分符号和上下标。 最后,确认回答使用中文,避免任何markdown格式,按照用户可见层的要求组织内容。确保每个部分都有对应的引用,并且问题部分符合要求。现在整合这些内容,形成结构化的回答。</think>### ORB-SLAM2 使用教程与源码解析 #### 一、安装配置 1. **依赖项安装** ORB-SLAM2需要以下依赖: - **Pangolin**(可视化库):用于3D地图显示 - **OpenCV**(计算机视觉库):图像处理与特征提取 - **Eigen3**(线性代数库):矩阵运算 - **DBoW2**(词袋模型库):用于回环检测 - **g2o**(图优化库):后端优化 ```bash # 安装依赖 sudo apt-get install libopencv-dev libeigen3-dev libboost-all-dev # 编译第三方库(DBoW2和g2o) cd ORB_SLAM2/Thirdparty/DBoW2 mkdir build && cd build && cmake .. && make -j4 cd ../../g2o mkdir build && cd build && cmake .. && make -j4 ``` 2. **编译ORB-SLAM2** ```bash cd ORB_SLAM2 chmod +x build.sh ./build.sh # 编译主程序 ``` 3. **ORB词典配置** 解压ORB词汇表`ORBvoc.txt.tar.gz`至`Vocabulary`目录,用于特征匹配与词袋模型: ```bash tar -xf ORBvoc.txt.tar.gz -C Vocabulary/ ``` --- #### 二、源码解析 ORB-SLAM2的核心模块如下: 1. **System类** - 入口类,管理跟踪(Tracking)、建图(Mapping)、回环检测(Loop Closing)线程[^3] - 关键函数:`TrackMonocular()`(单目输入) 2. **Frame类** - 封装单帧图像的ORB特征、相机参数和位姿 - 特征提取流程: $$ \text{图像} \xrightarrow{\text{FAST角点}} \text{ORB描述子} \xrightarrow{\text{词袋向量}} \text{匹配候选} $$ 3. **Tracking线程** - 使用运动模型(`TrackWithMotionModel()`)或参考关键帧(`TrackReferenceKeyFrame()`)初始化位姿[^4] - 重定位(`Relocalization()`)解决跟踪丢失问题 4. **优化模块** - 后端优化(Bundle Adjustment)通过g2o实现,最小化重投影误差: $$ \min \sum_{i} \| \pi(T_{cw}X_i) - x_i \|^2 $$ 其中$T_{cw}$为相机位姿,$X_i$为3D点,$x_i$为观测像素坐标 --- #### 三、使用教程 1. **运行TUM数据集** ```bash ./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUM1.yaml PATH_TO_DATASET ``` - `TUM1.yaml`:相机内参和超参数配置文件 - 需替换`PATH_TO_DATASET`为数据集路径(如`rgbd_dataset_freiburg1_desk`)[^2] 2. **自定义数据集适配** - 修改YAML文件中的相机参数(焦距、畸变系数) - 调整特征提取参数(如`nFeatures=2000`控制ORB特征数量) 3. **关键参数调整** - `Tracking线程`:`MaxFrames`(关键帧插入频率) - `Mapping线程`:`LocalWindowSize`(局部优化窗口大小) --- §§ 相关问题 §§ 1. ORB-SLAM2在安装时如何解决依赖冲突? 2. ORB特征提取与词袋模型如何实现高效匹配?[^1] 3. 如何优化ORB-SLAM2在低纹理场景下的表现? 4. ORB-SLAM2在动态物体环境中有哪些改进方法? --- ### 参考文献 : ORB-SLAM3知识点():词袋模型BoW : ORB_SLAM2源码解析:编译与数据集运行 : mono_tum.cc代码流程与System类分析 [^4]: TrackWithMotionModel()的位姿估计方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值