深度学习——不同的卷积形式

本文深入探讨了卷积神经网络的不同形式,包括分组卷积、空洞卷积及深度可分离卷积,并分析了各自的特点、参数量与计算量。通过对比不同类型的卷积,帮助读者理解其在深度学习模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本文总结了不同的卷积形式以及各自的参数量、计算量。

具体总结

分组卷积(Group convolution)

 

空洞卷积(Dilated convolution 或 Atrous convolution)

 

深度可分离卷积(depthwise separable convolutions)

 

参考博客

  1. https://blog.csdn.net/u010417185/article/details/83090195
  2. https://www.cnblogs.com/cvtoEyes/p/8848815.html
  3. 反卷积 https://www.cnblogs.com/cvtoEyes/p/8513958.html
  4.  

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值