深度学习模型压缩:量化、剪枝与蒸馏实战

摘要

深度学习模型在计算机视觉、自然语言处理等领域取得了卓越的成果,但其庞大的参数量与计算成本限制了在资源受限设备(如移动终端、边缘设备)上的部署。模型压缩技术通过量化(Quantization)、剪枝(Pruning)和蒸馏(Knowledge Distillation)等方法,使模型在保持精度的前提下降低存储与计算复杂度。本文深入探讨三种主流压缩方法的原理与实现,结合经典与创新代码示例,融合算法、硬件架构与优化编译等多学科知识,给出完整的实验流程与结果分析,并展望未来趋势与挑战。


目录

  1. 引言

  2. 模型压缩技术概述

    1. 定义与分类

    2. 多学科融合视角

  3. 量化技术

    1. 原理与方法

    2. 经典实现与优化

    3. 创新自适应量化示例代码

    4. 案例分析:ResNet-50 8-bit 量化

  4. 剪枝技术

    1. 基于权重稀疏性的剪枝算法

    2. 结构化 vs 非结构化剪枝

    3. 迭代式剪枝创新实现

    4. 案例分析:MobileNetV2 通道剪枝

  5. 蒸馏技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金枝玉叶9

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值