摘要
深度学习模型在计算机视觉、自然语言处理等领域取得了卓越的成果,但其庞大的参数量与计算成本限制了在资源受限设备(如移动终端、边缘设备)上的部署。模型压缩技术通过量化(Quantization)、剪枝(Pruning)和蒸馏(Knowledge Distillation)等方法,使模型在保持精度的前提下降低存储与计算复杂度。本文深入探讨三种主流压缩方法的原理与实现,结合经典与创新代码示例,融合算法、硬件架构与优化编译等多学科知识,给出完整的实验流程与结果分析,并展望未来趋势与挑战。
目录
-
引言
-
模型压缩技术概述
-
定义与分类
-
多学科融合视角
-
-
量化技术
-
原理与方法
-
经典实现与优化
-
创新自适应量化示例代码
-
案例分析:ResNet-50 8-bit 量化
-
-
剪枝技术
-
基于权重稀疏性的剪枝算法
-
结构化 vs 非结构化剪枝
-
迭代式剪枝创新实现
-
案例分析:MobileNetV2 通道剪枝
-
-
蒸馏技术