高阶神经网络与遗传算法在不同领域的应用
高阶神经网络相关研究
高阶神经网络(HONNs)在多个领域有着广泛的研究和应用。网络输出不仅依赖外部输入,还与系统输入的整个历史相关。以动态脊多项式神经网络(DRPNN)为例,它具备记忆能力,能够解决一些传统网络的局限性,展现出强大的动态性能。
在不同的高阶神经网络中,如Pi - Sigma神经网络(PSNN)、Jordan Pi - Sigma神经网络(JPSNN)、脊多项式神经网络(RPNN)和动态脊多项式神经网络(DRPNN),多年来在分类、预测、预报以及其他领域(如图像编码、密码学、模式识别等)都有不同的研究成果。以下是不同HONN在各领域研究工作占比的大致情况:
| HONN分类器 | 分类 | 预测与预报 | 其他 |
| — | — | — | — |
| PSNN | - | - | - |
| JPSNN | - | - | - |
| RPNN | - | - | - |
| DRPNN | - | - | - |
PSNN是一种非常流行的前馈网络,在1991 - 2017年期间,被广泛应用于各个领域,如温度预报、股票市场预测、图像处理、图像压缩密码学以及非线性分类等。许多研究人员使用不同的优化算法(如差分进化(DE)、粒子群优化(PSO)、遗传算法(GA)、化学反应优化(CRO)、教学学习优化(TLBO))对PSNN及其变体的四个网络模块进行训练,以减少近似误差并优化权重向量。
mermaid格式流程图展示PSNN训练流程:
graph LR
A[输