组合约化算法及其在LWE加密方案颠覆攻击中的应用
1. 引言
在密码学领域,加密方案的安全性一直是研究的核心。然而,随着技术的发展,针对加密方案的攻击手段也在不断涌现。近年来,一些研究利用加密方案中的后门进行攻击,如2017年Kwant等人利用ECC后门攻击NTRU加密方案,2018年Xiao和Yu展示了如何颠覆环LWE加密方案,2019年Yang等人成功为Regev设计的基于LWE的加密方案构造了后门。本文将对Vaikuntanathan和Waters提出的多比特LWE方案进行颠覆攻击,并结合基本约化算法形成新的组合约化算法,以提高解决相关问题的成功率,进而提升颠覆攻击的效果。
2. 晶格约化算法概述
2.1 经典晶格约化算法
晶格约化算法在密码学中有着重要的应用,以下是几种经典的晶格约化算法:
- LLL算法 :1982年由Lenstra、Lenstra和Lovász提出,该算法能在多项式时间内输出一个非零短向量,其近似因子为$((1 + \epsilon)\sqrt{4/3})^{(n - 1)/2}$,其中$\epsilon$是大于0的常数。此后,许多学者从优化约化效果或运行时间的角度对LLL算法进行了改进。
- BKZ算法 :1994年由Schnorr和Euchner提出,该算法引入了块大小$\beta$作为额外的输入参数。虽然它能从不同角度改进LLL算法,但在晶格维度较高时,得到的约化基并不理想。
- Segment - LLL算法 :2001年由Koy和Schnorr提出,能有效约化维度$n &l