76、组合约化算法及其在LWE加密方案颠覆攻击中的应用

组合约化算法及其在LWE加密方案颠覆攻击中的应用

1. 引言

在密码学领域,加密方案的安全性一直是研究的核心。然而,随着技术的发展,针对加密方案的攻击手段也在不断涌现。近年来,一些研究利用加密方案中的后门进行攻击,如2017年Kwant等人利用ECC后门攻击NTRU加密方案,2018年Xiao和Yu展示了如何颠覆环LWE加密方案,2019年Yang等人成功为Regev设计的基于LWE的加密方案构造了后门。本文将对Vaikuntanathan和Waters提出的多比特LWE方案进行颠覆攻击,并结合基本约化算法形成新的组合约化算法,以提高解决相关问题的成功率,进而提升颠覆攻击的效果。

2. 晶格约化算法概述

2.1 经典晶格约化算法

晶格约化算法在密码学中有着重要的应用,以下是几种经典的晶格约化算法:
- LLL算法 :1982年由Lenstra、Lenstra和Lovász提出,该算法能在多项式时间内输出一个非零短向量,其近似因子为$((1 + \epsilon)\sqrt{4/3})^{(n - 1)/2}$,其中$\epsilon$是大于0的常数。此后,许多学者从优化约化效果或运行时间的角度对LLL算法进行了改进。
- BKZ算法 :1994年由Schnorr和Euchner提出,该算法引入了块大小$\beta$作为额外的输入参数。虽然它能从不同角度改进LLL算法,但在晶格维度较高时,得到的约化基并不理想。
- Segment - LLL算法 :2001年由Koy和Schnorr提出,能有效约化维度$n &l

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值