20、Ensuring Security and Compliance in Confluence

Ensuring Security and Compliance in Confluence

1. Understanding the Security Landscape

Atlassian’s products are designed to promote collaboration, which requires access. However, caution must be exercised when authorizing access to information and Marketplace apps. Once permissions are set, Atlassian cannot prevent users from performing actions allowed by those permissions. Some products allow public anonymous access to data, which may lead to a loss of control over further distribution or copying.

1.1 Security Risks for Remote Teams in Confluence Cloud

Remote teams can benefit from Confluence Cloud for collaboration, but they also face several cybersecurity risks:
- Phishing attacks : Remote workers are more vulnera

资源下载链接为: https://pan.xunlei.com/s/VOYaEvb5YbXDcdRVMg3ANOaDA1?pwd=sjwe data.py 用于创建数据集。 makelabel.py 的功能是融合数字与背景并保存。其中,一张背景图会在四个象限随机添加一个数字,且几乎无重叠。标签形状为(32,32,11),32×32 是热图输出大小,每个热图像素对应原图 4×4 的方格,每个方格作为分类器,可分出 11 类,0-9 对应数字,10 代表背景。fusion_img 函数将一个数字融合到背景图的随机位置;fusion_4img 函数考虑到单个数字太少,可处理四个数字,输入参数为(背景,(图片 1,标签 1),(图片 2,标签 2)...),输出为图片(0-255)和标签。 model.py 是模型文件,最终占用 192kb 内存。 test.py 为测试脚本,包含两个定义的函数,加载模型后可进行单张测试和视频测试,使用时注释另一个即可。onepoint 函数输入矩阵和点的 xy 坐标,逐行扫描该点周围 6 行的像素,若为 1(表示有物体),就将对应方格的 xy 加入数组并置零。扫描完周围 6 行后,若总点数超过 10 个,判定为一个物体,对所有 xy 分别求平均,得到物体中心。 单张图片后处理过程:获取输出的 32×32×11 矩阵,先扫描 32×32 区域,对每行取 argmax,若不属于背景类,说明可能存在物体,再设阈值过滤部分误识别框,然后将该点值置为 1 作为标记。 再次扫描矩阵时,为避免越界,从第 6 行开始到 25 行结束。若扫描到 1,如(2020,3)这一格为 1,就取矩阵对应 3 的那一层(32×32 大小),将该矩阵和(2020)坐标传入 onepoint 函数,返回中心,类别为 3。一般不会误判,若一个数字有两种可能且两种像素数都超 10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值