salt9
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、迈向实时且节能的孪生跟踪:软硬件结合的方法
本文提出了一种软硬件结合的方法,用于实现实时且节能的孪生视觉目标跟踪。通过在Zynq UltraScale + MPSoC ZCU104平台上实现自定义的量化孪生神经网络架构,并对算法与硬件进行协同设计,在保证与原始SiamFC相当精度的同时显著降低了计算复杂度和能耗。实验结果表明,该方法在VOT 2016数据集上表现良好,且通过调整折叠参数实现了资源使用与处理速度之间的优化平衡,为低功耗场景下的实时视觉跟踪提供了可行方案。原创 2025-07-15 15:41:18 · 11 阅读 · 0 评论 -
18、适用于健身活动的自适应认知微控制器节点
本文介绍了一种用于健身活动监测的自适应认知微控制器节点,通过动态硬件和软件重新配置实现高效能与低功耗。该节点基于过程网络模型,支持原始数据传输、基本平衡分析和基于CNN的运动识别三种操作模式。采用量化神经网络和数据增强技术,实现了超过97%的识别准确率,并通过自适应运行时管理器(ADAM)优化能耗,最多可节省60%的能量。实验结果表明,该节点在定制数据集上表现优异,并为未来健身和健康监测设备的发展提供了重要参考。原创 2025-07-14 14:48:17 · 13 阅读 · 0 评论 -
17、探索用于ADAS的高光谱图像分割的全卷积网络及自适应健身活动识别设备
本博客探讨了高光谱图像分割在高级驾驶辅助系统(ADAS)中的应用以及自适应健身活动识别设备的技术进展。重点分析了U-Net在图像分割中的优势及其与传统ANN模型的对比,介绍了ADAS系统中的图像预处理流程与神经网络部署过程。同时,讨论了基于微控制器的健身活动识别设备如何通过自适应优化降低功耗并提升识别准确率。此外,博客还提出了两个领域的未来优化方向,包括模型改进、功能拓展及用户体验提升,展现了深度学习技术在智能交通和健康健身领域的广阔前景。原创 2025-07-13 16:38:35 · 12 阅读 · 0 评论 -
16、实时高光谱分类与分割技术研究
本研究探讨了实时高光谱分类与分割技术的应用与发展。在高光谱分类中,评估了不同数据类型(双精度、单精度和半精度)在性能、功耗和分类精度方面的差异,发现半精度在保证分类质量的同时显著提升了性能并降低了功耗。此外,研究了全卷积网络(U-Net)在高级驾驶辅助系统(ADAS)中对高光谱图像进行语义分割的能力,实验表明其在多类别分割任务中具有良好的准确性和实用性,但在复杂场景下仍有改进空间。未来的发展方向包括模型优化、算法加速以及对硬件平台与结果关系的深入研究。原创 2025-07-12 14:13:22 · 14 阅读 · 0 评论 -
15、实时高光谱分类的数据类型评估
本文研究了在基于异构CPU+GPU的嵌入式系统上,使用不同数据类型(双精度、单精度和半精度)实现支持向量机(SVM)对高光谱视频(HSV)进行实时分类的效果。通过对比处理速度、功耗和准确性,分析了不同数据类型的适用场景,并提出了根据硬件资源和应用需求选择合适数据类型的策略,为推动高光谱技术在神经外科等医学领域的实际应用提供了参考。原创 2025-07-11 15:01:19 · 9 阅读 · 0 评论 -
14、基于约束生成的定点代码合成与医疗影像数据类型评估
本文介绍了基于约束生成的定点代码合成工具POPiX及其在嵌入式系统优化中的应用,以及医疗影像处理中数据位深度对性能和质量的影响。POPiX通过静态分析和整数线性规划(ILP)求解,实现代码在执行时间、内存和能源消耗方面的显著优化;而医疗影像实验表明降低数据位深度可在不显著影响质量的前提下大幅提升处理性能。研究为实时系统开发和医疗设备优化提供了重要参考。原创 2025-07-10 10:38:12 · 11 阅读 · 0 评论 -
13、基于FPGA的嵌入式系统QoS感知应用管理器与定点代码合成技术
本文介绍了两种关键技术:基于FPGA的嵌入式系统QoS感知应用管理器和基于约束生成的定点代码合成工具POPiX。前者通过任务和资源级别的映射与调度,在资源受限的情况下确保应用程序的服务连续性;后者则通过静态分析和约束系统求解,将浮点程序自动转换为满足精度要求的定点程序,从而实现显著的内存和能量节省。实验结果表明,POPiX在多个基准测试中实现了高达75%的内存节省和高达3.5倍的能量节省。原创 2025-07-09 12:17:25 · 9 阅读 · 0 评论 -
12、FPGA 嵌入式系统的 QoS 感知应用管理器
本文介绍了一种面向 FPGA 嵌入式系统的 QoS 感知应用管理器,通过设计时的解决方案生成和运行时动态调整,实现服务质量(QoS)的优化。该管理器基于任务和资源级混合管理策略,能够在资源受限和环境变化的情况下,动态调整应用的 QoS 级别,确保服务连续性。文章详细描述了系统模型、QoS 模型、提出的混合管理器架构以及运行时管理机制,并通过实验验证了其在不同场景下的有效性。实验结果表明,该管理器在提升 QoS 分数、优化执行时间和提高资源利用率方面具有显著效果。未来的研究方向包括多应用管理、更复杂的 QoS原创 2025-07-08 12:18:56 · 10 阅读 · 0 评论 -
11、数据流参数对优化标准的影响及FPGA嵌入式系统QoS管理器设计
本博文围绕多标准设计空间探索(DSE)和FPGA嵌入式系统的QoS感知设计展开,分析了不同计算机视觉应用(如Sobel、Stereo和SIFT)中可塑参数对性能指标(如功率、延迟、吞吐量和内存等)的影响。通过详尽与快速参数分析方法,研究如何高效评估参数配置并减少探索时间。同时,提出了一种基于动态部分重新配置的FPGA嵌入式系统运行时管理器,能够在资源约束变化的情况下维持高质量服务(QoS),确保任务按时完成且无中断。研究成果为复杂嵌入式系统的多目标优化与实时调度提供了有效的解决方案。原创 2025-07-07 15:46:23 · 9 阅读 · 0 评论 -
10、卷积神经网络调度与数据流图参数优化研究
本文探讨了卷积神经网络(CNNs)在嵌入式系统中的调度算法及其能耗与性能表现,比较了逐节点调度(SNN)、任务分解调度(STD)和任务拉伸调度(STS)在低功耗CPU上的执行效果。此外,研究引入了数据流模型中的可塑参数概念,并提出了自动化设计空间探索(DSE)算法,以高效分析不同配置对应用优化标准(如延迟、能耗和吞吐量)的影响,为提升嵌入式系统的资源利用率提供了新思路。原创 2025-07-06 10:35:28 · 10 阅读 · 0 评论 -
9、多核MCU上CNN调度的比较研究
本文研究了在多核MCU上运行卷积神经网络(CNN)的调度算法,比较了逐个节点调度(SNN)、任务分解调度(STD)和任务拉伸调度(STS)三种算法在调度时间、能耗及适用性方面的表现。通过构建有向无环图(DAG)模型,并基于真实硬件平台测量能耗,研究表明SNN算法在调度时间和能耗方面均优于其他算法,尤其适用于复杂的CNN模型。同时,文章提供了根据实际场景选择合适调度算法的建议,为边缘计算环境下的高效神经网络执行提供了参考。原创 2025-07-05 11:00:04 · 9 阅读 · 0 评论 -
8、深度学习网络的创新架构与调度策略
本文介绍了DL-CapsNet这一高效的胶囊网络变体,其通过独立类别解码器、CapsSum层和MLCE模块等创新设计,在分类准确性和参数数量之间取得了良好平衡。实验表明,DL-CapsNet在多个数据集上表现优异,尤其在集成模型下展现出强大的泛化能力。此外,研究还评估了三种调度算法(SNN、STD、STS)在多核MCU上对CNN的调度性能,结果显示SNN算法在层级别调度时具有最优的完成时间和能量消耗表现。这些研究成果为深度学习在网络边缘和资源受限环境中的应用提供了新的解决方案。原创 2025-07-04 11:52:21 · 11 阅读 · 0 评论 -
7、深度学习中的网络优化与新型架构探索
本文探讨了深度学习中的网络优化与新型架构设计,重点分析了动态神经网络剪枝技术在嵌入式系统中的应用以及新型胶囊网络DL-CapsNet的架构创新。动态剪枝通过减少计算负载和功耗显著提升了推理效率,而DL-CapsNet则通过深度设计、复杂度降低和高效解码器实现了对复杂数据集的高精度分类。这些方法为资源受限环境下的模型部署和更强大的特征表示提供了新的解决方案,并展望了未来研究方向。原创 2025-07-03 13:18:41 · 12 阅读 · 0 评论 -
6、嵌入式系统上用于简约CNN推理的动态剪枝技术
本文介绍了一种在资源受限的嵌入式系统上优化卷积神经网络(CNN)推理的技术,通过基于输入数据复杂度的动态剪枝来减少计算负载。研究在ST SensorTile和NEURAghe两个平台上进行了实验,分别用于关键词识别和图像识别任务,结果表明该技术能够显著提升推理速度并降低能耗。原创 2025-07-02 15:57:03 · 10 阅读 · 0 评论 -
5、高效实现QCSP通信系统的深入解析
本文深入解析了QCSP通信系统的高效实现方法,重点讨论了基于FFT和时间滑动的得分处理单元计算方法,并对比了它们在不同场景下的复杂度、检测性能及资源需求。文章涵盖了检测任务的并行化策略,包括多线程、SIMD向量化以及FPGA硬件实现方案。通过软件与硬件的性能测试结果分析,展示了时间滑动方法在多数情况下具有更优的性能和更低的资源消耗。此外,还提出了未来的优化方向,如定点实现、完整系统构建及应用拓展,适用于LPWAN等低功耗物联网场景。原创 2025-07-01 12:50:39 · 12 阅读 · 0 评论 -
4、5G NR 极性码低延迟解码架构与 QCSP 通信系统高效实现
本文探讨了5G NR极性码的低延迟解码架构以及QCSP通信系统的高效实现。在5G NR极性码部分,介绍了针对不同长度组成码的识别架构、解码器设计以及延迟分析,并与现有解码器进行了性能对比,结果显示所提出架构在延迟和资源消耗方面具有显著优势。在QCSP通信系统部分,详细描述了其发射端和接收端的处理流程,该系统通过CCSK调制和NB-LDPC编码实现了在极低信噪比下的高可靠性小数据包传输。此外,还讨论了QCSP系统在软件和硬件层面的实现策略,包括多线程并行处理和FPGA模块设计。最后总结了这两项技术在物联网和5原创 2025-06-30 12:50:51 · 20 阅读 · 0 评论 -
3、5G NR 极化码低延迟解码架构设计
本文探讨了5G NR控制信道中极化码的低延迟解码架构设计。该架构采用半并行CRC辅助SCL解码器,结合特殊节点列表解码模块和优化内存结构,显著降低了硬件复杂度和解码延迟,满足了5G NR对灵活性、高吞吐量和低误块率的要求。基于FPGA的实现验证表明,其最坏情况下的解码延迟为23.91微秒,符合5G NR标准的目标约束。原创 2025-06-29 12:08:53 · 14 阅读 · 0 评论 -
2、高性能Gallager - E解码器及5G NR极化码低延迟架构设计
本文探讨了高性能的Gallager-E解码器优化实现,以及面向5G NR极化码的低延迟硬件架构设计。在LDPC解码部分,通过算法优化、内存压缩和SPMD并行化技术显著提升了吞吐量和能效,并与FPGA实现进行了性能对比分析。针对5G控制信道的需求,提出了一种灵活且低延迟的列表型极化解码架构,支持全帧长和码率范围,在最坏情况下的解码延迟低于24 μs。研究展示了在多核Xeon平台上的高效实现方案,并揭示了未来在降低延迟、提高硬件利用率和增强纠错能力方面的潜力与方向。原创 2025-06-28 12:46:46 · 12 阅读 · 0 评论 -
1、高性能多核心设备上的硬输入LDPC解码Gallager - E解码器
本文探讨了在高性能多核设备上实现硬输入低密度奇偶校验(LDPC)解码器的方法,重点分析了Gallager-E解码算法及其优化策略。通过帧间和帧内两种SIMD并行化策略的对比与应用,结合INTEL x86处理器特性,在10次迭代下实现了高达7.5 Gbps的吞吐量。该研究为光空间通信等高吞吐量需求场景提供了高效的纠错解码解决方案,并展望了其在未来通信系统中的广泛应用前景。原创 2025-06-27 16:05:54 · 10 阅读 · 0 评论