题意:
求出n个数中,所有子区间的不同元素的个数的和
思路: 期望的线性性
dp[ i ]代表第i个位置的数a[ i ]对于前i个数中的子区间产生的贡献为多少,如果这个数第一次出现,那么这个数a[ i ]对于前面出现的i个包含a[ i ]的区间都有贡献。如果这个数不是第一次出现,他就会对a[ i ]到他上一次出现的地方之间的所有子区间产生贡献。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int pre[100100],a[100100];
ll dp[100100];
int main(){
int n;cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
dp[1]=1;
pre[a[1]]=1;
ll sum=1;
for(int i=2;i<=n;i++){
dp[i]=dp[i-1]+(i-pre[a[i]]);
pre[a[i]]=i;
sum+=dp[i];
// cout<<dp[i]<<endl;
}
cout<<sum<<endl;
}
C
#include<bits/stdc++.h>
using namespace std;
int ma1[1050][1050];
int ma2[1050][1050];
int main(){
ma1[1][1]=1;
int m;cin>>m;
for(int i=2;i<=m;i*=2){
for(int j=1;j<=i/2;j++){
for(int k=1;k<=i/2;k++){
ma2[j][k]=ma1[j][k];
}
}
for(int j=1;j<=i/2;j++){
for(int k=i/2+1;k<=i;k++){
ma2[j][k]=ma1[j][k-i/2];
}
}
for(int j=i/2+1;j<=i;j++){
for(int k=1;k<=i/2;k++){
ma2[j][k]=ma1[j-i/2][k];
}
}
for(int j=i/2+1;j<=i;j++){
for(int k=i/2+1;k<=i;k++){
ma2[j][k]=-ma1[j-i/2][k-i/2];
}
}
for(int j=1;j<=i;j++){
for(int k=1;k<=i;k++){
ma1[j][k]=ma2[j][k];
}
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
cout<<ma2[i][j]<<" ";
}
cout<<endl;
}
}