求最大公约数
1,辗转相除法
temp=a%b ;
a=b;
b=temp;
2,辗转相减法
- 用大数减去小数,辗转相减,差为0时减数或被减数就是最大公约数
若a=b,则a(或b)即为两数的最大公约数
若a>b,则a=a-b
若a<b,则b=b-a
3,分解质因数法
- 把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数
例:求12和18最大公约数
12=2x2x3;
18=2x3x3;
全部共有的质因数相乘:2x3=6
求最小公倍数
1,分解质因数法
- 把所有数的质因数找出来,最小公倍数等于所有数质因数的乘积(如果有几个数含有相同的质因数,则以该质因数最多的那个来进行乘积计算)
例:求10和12最小公倍数。
10=2×5
12=2×2×3
最小公倍数:2×2×3×5=60
2,公式法
- 两个数的乘积等于两个数的最大公约数与最小公倍数的乘积。
即(a,b)× [a,b]=a×b
3,短除法
- 对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下,直到剩下每两个都是互质关系。最小公倍数即等于所有的公因数及剩下的质数的乘积。

特殊情况:
- 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
- 如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。