机器学习—线性回归(Linear Regression)

       回归问题是一类预测连续值的问题,而能满足这样要求的数学模型称作回归模型,线性回归就是回归模型中的一种,我们通过给模型“喂”数据来训练它,最终让它具备了预测的能力。

1.线性回归定义

       给出一个点集,构造一个函数来拟合这个点集,并且尽可能的让该点集与拟合函数间的误差最小,如果这个函数曲线是一条直线,那就被称为线性回归,如果曲线是一条三次曲线,就被称为三次多项回归。回归模型正是表示从输入变量到输出变量之间映射的函数。

2.一元线性回归

一元线性回归分析预测法,是根据自变量x和因变量y的相关关系,建立x与y的回归函数进行预测的方法  y=ax+b,比如,我有一组数据画出来的散点图,横坐标客户数量,纵坐标代表销售量,线性回归就是要找一条直线,并且让这条直线尽可能地拟合图中的数据点。

如图所示,通过训练数据拟合一个函数,就可以进行x=9的值进行预测y值的大小

3.Sklearn库使用示例

LinearRegression()模型在Sklearn.linear_model下,他主要是通过fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型。线性模型的回归系数W会保存在他的coef_方法中。

1)加载模拟数据

import pandas as pd
data=pd.read_csv('generate_data.csv')
print(data)
#data赋值
x=data.loc[:,'x']
y=data.loc[:,'y']
print(x)
print(y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值