35、网络安全攻防:常见攻击手段与防御策略

网络安全攻防:常见攻击手段与防御策略

1. 拒绝服务攻击

1.1 攻击类型

1.1.1 TCP 三次握手与 SYN 洪泛攻击

在正常的 TCP 连接建立过程中,客户端会向目标发送 SYN 数据包以建立该会话中从源到目标的所有数据包的序列号。目标会用 SYN - ACK 数据包响应,确认从源到目标的数据包序列号,并为反方向的数据包建立初始序列号。最后,源通过向目标发送 ACK 完成三次握手,之后即可进行实际的数据传输。

SYN 洪泛攻击利用了 TCP 三次握手的弱点。攻击者仅发送伪造的 SYN 数据包,而从不响应 SYN - ACK,这会耗尽服务器维护所有已发起会话状态的能力。大量所谓的半开放连接会使服务器无法处理任何新的合法流量。与填满服务器的所有管道带宽不同,这种攻击只需使服务器处理会话发起的能力过载即可(在大多数网络配置中,服务器处理 SYN 的能力低于站点的总带宽),因此 SYN 洪泛是最常见的数据包洪泛攻击。

1.1.2 定向广播攻击(Smurf 攻击)

定向广播攻击也称为 Smurf 攻击,攻击者利用第三方网络作为数据包洪泛的放大器。攻击者会找到一个会响应广播 ICMP 消息的网络(本质上是对网络广播地址的 ping)。如果该网络配置为允许广播请求和响应,网络上的所有机器都会对 ping 做出响应。通过伪造 ICMP 请求,攻击者可以让第三方网络上的所有机器向受害者发送响应。例如,一个组织在连接到互联网的单个 DMZ 网络上有 30 台主机,攻击者可以向该 DMZ 发送伪造的网络广播 ping,所有 30 台主机都会向伪造的地址(即最终受害者)发送响应。通过向广播网络重复发送消息,攻击者可以将带宽放

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值