李沐动手学深度学习pytorch :问题:找不到d2l包,No module named ‘d2l’

本文提供了d2l库的下载链接及安装指南,包括如何通过百度云获取资源、正确放置库文件路径,以及解决常见模块未找到的问题。还介绍了如何在特定环境下安装所需的第三方库,如tqdm和torchtext。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 下载d2l
    我是从GitHub上直接下载后放到百度云的,亲测有效。
    直接百度云:
    链接:https://pan.baidu.com/s/1zKCvb6_bj0Tz_tMhlYlFWA
    提取码:xm79

  2. 将文件夹 d2l 【记住这个是 小写 L 不是 数字 1 】 放到anaconda 你自己创建的环境下:
    C:\ProgramData\Anaconda3\envs\pytorchzc\Lib\site-packages
    重点:要放到自己创建的环境下,别放错了。
    在这里插入图片描述

  3. 在Anaconda Prompt 下查看环境: conda info -e

  4. 激活自己创建的环境 activate pytorchzc

  5. 错误:
    1)ModuleNotFoundError :No module named ‘tqdm’
    2)ModuleNotFoundError :No module named ‘torchtext’

  6. 如出现上述报错,需要安装上述包:

  7. 在激活的环境下,安装 tqdm 包;输入如下命令: pip install tqdm

  8. 在激活的环境下,安装 torchtext 包;输入如下命令: pip install torchtext

  9. 在激活的环境下,重新启动jupyter notebook就可以导入d2l啦
    本人初学,如有问题,请及时提醒我更正,谢谢!

  10. 如果觉得手动不方便,可以在jupyter notebook 上输入如下即可,现在方便多了,以前手动苦逼啊!

!pip install -U d2l
<think>我们正在处理用户的问题:如何在PyCharm中配置并运行动手学深度学习》代码? 根据引用内容,我们需要配置环境,括安装Anaconda(或Miniconda)、创建虚拟环境、安装必要的(如pytorch, d2l等),并在PyCharm中设置解释器。 步骤分解: 1. 安装Anaconda或Miniconda(引用[2]提到Miniconda,引用[1][3]提到Anaconda) 2. 配置conda环境(括设置清华镜像源,引用[3]) 3. 创建虚拟环境并安装指定版本的Python(引用[4]提到虚拟环境的重要性) 4. 安装PyTorch和d2l(引用[1][2][5]) 5. 在PyCharm中配置该虚拟环境作为解释器 6. 下载代码并运行(引用[2]提到下载代码压缩,引用[5]展示了一个代码示例) 注意:引用[1]提到不要使用Python3.12,因为d2l可能不支持,建议使用3.11或更低版本(引用[2]使用3.7,但根据视频,我们选择3.9或3.8?) 实际上,的代码在书中指定了环境,我们可以按照书中的要求来。通常,书中使用Python3.8或3.9。 具体步骤: 第一步:安装Miniconda或Anaconda - 下载Miniconda(轻量级)或Anaconda(完整版)。推荐Miniconda,因为占用空间小。 - 安装时勾选“Add to PATH”(引用[2])。 第二步:配置conda镜像源(国内用户建议,加速下载) - 使用引用[3]中的命令设置清华镜像源。 第三步:创建虚拟环境 - 打开命令行(终端),执行以下命令创建虚拟环境(假设使用Python3.9): conda create -n d2l python=3.9 - 激活环境: conda activate d2l 第四步:安装PyTorch和d2l - 根据PyTorch官网(https://pytorch.org/)的安装命令安装PyTorch(注意选择适合自己CUDA版本的,如果没有GPU则选择CPU版本)。 例如,对于没有GPU的用户: conda install pytorch torchvision torchaudio cpuonly -c pytorch - 安装d2l(注意:d2l在conda的d2l频道中,或者用pip安装): pip install d2l 第五步:在PyCharm中配置虚拟环境 - 打开PyCharm,创建新项目(或打开已有项目)。 - 在设置中(File -> Settings -> Project: your_project_name -> Python Interpreter),点击齿轮按钮,选择“Add”。 - 选择“Conda Environment”,然后选择“Existing environment”,并到刚才创建的虚拟环境(通常在Miniconda或Anaconda安装目录下的envs/d2l文件夹中的python.exe)。 - 点击确定。 第六步:下载动手学深度学习》的代码 - 代码仓库:https://github.com/d2l-ai/d2l-zh - 下载zip或克隆到本地,然后在PyCharm中打开项目。 第七步:运行代码 - 打开一个章节的代码文件(如chapter_multilayer-perceptrons/mlp-scratch.py),右键运行。 注意:引用[5]中展示了一个训练多层感知机的代码,其中使用了d2l。确保代码中导入的都已安装。 可能遇到的问题: 1. 如果运行代码时出现模块不到,可能是d2l没有安装,或者安装的版本不对。的代码需要d2l的特定版本?但通常安装最新版即可。 2. 注意书中代码使用的PyTorch版本,最好安装书中指定的版本(查看书籍前言或代码仓库的README)。 根据引用[1]的提醒,避免使用Python3.12,我们选择3.9或3.8。 现在,我们将按照上述步骤详细说明。</think>### 在PyCharm中配置并运行动手学深度学习》代码的完整指南 #### 一、环境准备 1. **安装Miniconda/Anaconda** - 下载地址:[Miniconda](https://docs.conda.io/en/latest/miniconda.html) 或 [Anaconda](https://www.anaconda.com/download) - 安装时勾选 **"Add to PATH"**(环境变量自动配置)[^2] - 验证安装:终端输入 `conda --version` 显示版本号 2. **配置清华镜像源**(加速下载) 在终端执行: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` [^3] 3. **创建虚拟环境** ```bash conda create -n d2l python=3.9 # 推荐Python 3.8-3.10(避免3.12不兼容)[^1][^4] conda activate d2l ``` #### 二、安装核心依赖 在激活的虚拟环境中执行: ```bash # 安装PyTorch(根据硬件选择) conda install pytorch torchvision torchaudio cpuonly -c pytorch # CPU版本 # 或 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia # GPU版本 # 安装学习库 pip install d2l jupyter matplotlib pandas ``` #### 三、PyCharm配置 1. **打开项目** - 下载代码仓库: [d2l-zh GitHub](https://github.com/d2l-ai/d2l-zh) - 在PyCharm中选择 `File > Open` 导入解压后的文件夹 2. **设置解释器** - `File > Settings > Project: d2l-zh > Python Interpreter` - 点击齿轮图标 ➜ `Add Local Interpreter` - 选择 `Conda Environment` ➜ 定位到 `Miniconda3/envs/d2l/python.exe` 3. **解决路径问题**(针对d2l) 在代码开头添加: ```python import sys sys.path.append('..') # 允许导入上级目录的d2l ``` #### 四、运行示例代码 以多层感知机为例(`chapter_multilayer-perceptrons/mlp-scratch.py`): 1. 右键文件选择 `Run 'mlp-scratch'` 2. 训练过程将显示损失曲线: ![](https://d2l.ai/_images/output_mlp-scratch_76f463_42_0.svg) [^5] #### 五、常见问题解决 | 问题现象 | 解决方案 | |---------|---------| | `ModuleNotFoundError: No module named 'd2l'` | 1. 确认解释器路径正确<br>2. 在终端执行 `pip install -U d2l` | | 图形无法显示 | 安装 `pip install ipykernel` 并重启PyCharm | | CUDA不可用 | 检查PyTorch安装命令是否匹配CUDA版本 | > **虚拟环境优势**:不同项目可隔离Python版本和依赖(如Python 3.8/3.9切换)[^4],避免版本冲突。 #### 六、学习建议 1. 调试技巧:在PyCharm中使用 **断点调试** 观察张量变化 2. 修改超参数:直接编辑代码中的 `lr`(学习率)、`num_epochs`(迭代次数)等参数 3. 扩展实践:复制代码文件后重命名,尝试修改网络结构
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值