加法原理
通俗来说,加法原理可以这么理解:
从长沙到北京可以坐高铁,也可以坐飞机,假设坐高铁有 2 2 2种线路,坐飞机有 3 3 3种线路,那么从长沙到北京总共有 2 + 3 = 5 2+3=5 2+3=5种线路。
还有一种说法:做一件事情,有 n n n类方式,第一类方式有 m 1 m_1 m1种方法,第二类方式有 m 2 m_2 m2种方法……直到第 n n n类方式有 m n m_n mn种方法,那么总共有 m 1 + m 2 + … … + m n m_1+m_2+……+m_n m1+m2+……+mn种方法。(加法原理)
乘法原理
同样,乘法原理也可以这么理解:
从长沙到北京如果坐飞机得经过黄花机场,这就用到了乘法原理:从长沙到黄花机场可以坐地铁,也可以打滴滴,用加法原理可以得知从长沙到黄花机场有 3 3 3种方式,但是到了黄花机场还要坐飞机,所以总方案数就是 3 × 2 = 6 3\times2=6 3×2=6种。
同样,也还有一种说法:做一件事情,有 n n n个步骤,第一类步骤有 m 1 m_1 m1种方法,第二类步骤有 m 2 m_2 m2种方法……直到第 n n n类步骤有 m n m_n mn种方法,那么总共有 m 1 × m 2 × m_1\times m_2\times m1×m2×… × m n \times m_n ×mn种方法。(乘法原理)
全排列
从 n n n个不同的元素中选取 m m m个,按照顺序排列起来,叫做从 n n n个不同元素中取出 m m m个元素的一个排列,如果 n = m n=m n=m,就叫全排列,全排列方案总数= n ! n! n!。(全排列)
例如,有一个序列为 1 , 2 , 3 {1,2,3 } 1,2,3,那么有以下 6 6 6种排列方式:
1
,
2
,
3
1,2,3
1,2,3
1
,
3
,
2
1,3,2
1,3,2
2
,
1
,
3
2,1,3
2,1,3
2
,
3
,
1
2,3,1
2,3,1
3
,
1
,
2
3,1,2
3,1,2
3
,
2
,
1
3,2,1
3,2,1
排列组合
排列:意思是从n个数里面选取m个数出来进行排列,总方案数就是 A n m A_n^m Anm,代表 n × ( n − 1 ) × … … × ( n − m + 1 ) n \times(n-1) \times…… \times(n-m+1) n×(n−1)×……×(n−m+1)。例如,小明班有 10 10 10名同学,要选出 3 3 3名去拍合照,总方案数是 C m n = A n m n ! C_m^n=\frac{A_n^m}{n!} Cmn=n!Anm,也就是 10 × 9 × 8 = 720 10 \times9 \times8=720 10×9×8=720种方案。
组合:意思是从n个数里面选取m个数出来,总方案数是 C n m = A n m n ! C_{n}^{m} = \frac{A_{n}{m}}{n!} Cnm=n!Anm,也是 n × ( n − 1 ) × ⋯ × ( n − m + 1 ) n × ( n − 1 ) × ⋯ × 1 \frac{n\times(n-1)\times\dots \times(n-m+1)}{n\times(n-1)\times\dots \times1} n×(n−1)×⋯×1n×(n−1)×⋯×(n−m+1)。例如,还是小明班有10名同学,但这次要选3名去搞卫生,那么总方案数应是,也就是 10 × 9 × 8 ÷ 3 ÷ 2 ÷ 1 = 120 10 \times9 \times8\div3\div2\div1 =120 10×9×8÷3÷2÷1=120种方案。
组合数的规律:组合数具有对称性,也就是=,可以把它理解成从 n n n个数中选 m m m个数和从 n n n个数中不选 n − m n-m n−m个数,方案总数是相同的。
杨辉三角
1
1
1
11
1 1
11
121
1 2 1
121
1331
1 3 3 1
1331
14641
1 4 6 4 1
14641
以上是杨辉三角的一小部分,仔细观察可以发现每一个数都等于它头顶上的两个数之和,还可以发现每一层的总和是
2
2
2 的 ( 当前层数
−
1
-1
−1) 次方。
二项式定理
( a + b ) n = C n 0 × a n + C n 1 × a n − 1 × b 1 + C n 2 × a n − 2 × b 2 + . . . + C n n − 1 × a 1 × b n − 1 + C n n × b n (a+b)^n=C_n^0\times a^n+C_n^1\times a^{n-1}\times b^1+C_n^2\times a^{n-2}\times b^2+... +C_n^{n-1}\times a^1\times b^{n-1}+C_n^n\times b^n (a+b)n=Cn0×an+Cn1×an−1×b1+Cn2×an−2×b2+...+Cnn−1×a1×bn−1+Cnn×bn
如果我们把 a , b a,b a,b设为 1 1 1,那么我们可以得到以下展开式:
2 n = C n 0 + C n 1 + C n 2 + . . . + C n n − 1 + C n n 2^n=C_n^0+C_n^1 + C_n^2+... +C_n^{n-1}+C_n^n 2n=Cn0+Cn1+Cn2+...+Cnn−1+Cnn