Leetcode 435. Non-overlapping Intervals

该博客介绍了如何使用贪心算法和动态规划解决删除重叠时间区间的问题。首先,通过贪心策略,根据起始时间排序区间,通过比较当前区间与前一个区间的关系来决定保留哪个区间。然后,展示了动态规划解决方案,通过维护一个最大非重叠区间的长度数组,找出最优解。两种方法都确保了最少的区间数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​​​​​​Loading...

贪心 + 排序

class Solution:
    def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
        if not intervals:
            return 0
        
        # sort intervals by start point
        intervals.sort()
        
        pre = intervals[0]
        count = 0
        for i in range(1, len(intervals)):
            
            cur = intervals[i]
            
            # there are 3 cases
            
            # case 1: previous interval is NOT overlapping with current interval
            # |__pre__|    |__cur_|
            # strategy: we can have both intervals in the candidate list 
            if self._is_not_overlap(pre, cur):
                # print('not overlap')
                pre = cur
            
            # case 2: two intervals overlap, but current interval ends earlier
            # |__________pre________|
            #    |____cur___|
            # strategy:  keep 'cur', and remove 'pre' from the candidate list
            elif self._is_first_interval_shorter(cur, pre):
                # print('case 2')
                pre = cur
                count += 1
                
            # case 3: two intervals overlap, but previous interval ends earlier
            # |____pre___|
            #   |______cur_____|
            # GREEDY strategy: we always keep 'pre', and remove 'cur' interval
            # because no matter what cases is the next interval after current, it's always better to keep previous interval
            #
            #     case 3.1 
            #         |__pre___|
            #              |__cur__|  |__next__|
            #        strategy: either previous or current interval will work
            # 
            #     case 3.2 
            #         |__pre_______|               or    |__pre__|
            #               |_____cur__________|            |__cur____________|
            #                   |__next__|                          |__next__|    
            #         strategy: only previous interval has the chance to NOT overlap with next interval -> take 'pre'
            #     
            #     case 3.3 
            #         |__pre___|               or   |__pre___|
            #            |__cur_______|                |__cur_______|  
            #               |__next_____|                        |__next____|
            #          strategy: only previous interval has the chance to NOT overlap with next interval -> take 'pre'
            else:
                # print('case 3')
                count += 1
        
        return count
    
    # is first interval ends earlier than the second one?
    def _is_first_interval_shorter(self, interval_first: List[int], interval_second: List[int]) -> bool:
        interval_first_end = interval_first[1]
        interval_second_end = interval_second[1]
        return interval_first_end <= interval_second_end
        
    
    # it's guaranteed that interval_1 will always start before interval_2
    def _is_not_overlap(self, interval_1: List[int], interval_2: List[int]) -> bool:
        # not overlap means  |__interval_1___|    |_interval_2__|
        interval_1_end = interval_1[1]
        interval_2_start = interval_2[0]
        return interval_1_end <= interval_2_start
        

DP solution

class Solution:
    def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
        if not intervals:
            return 0
        
        # initialize DP
        dp = [0] * len(intervals)
        dp[0] = 1
        
        intervals.sort()  # sort by starting point
        
        for i in range(1, len(intervals)):
            
            max_len = 1
            interval = intervals[i]
            
            for j in range(i):
                
                if self._is_overlap(interval, intervals[j]):
                    # print('overlap', interval, intervals[j])
                    continue
                else:
                    max_len = max(max_len, dp[j] + 1)
                    
            dp[i] = max_len
        
        # print(dp)
        return len(intervals) - max(dp)
    
    
    def _is_overlap(self, i_1: List[int], i_2: List[int]) -> bool:
        i_1_start = i_1[0]
        i_2_end = i_2[1]
        return not i_2_end <= i_1_start
        
        

### LeetCode 435 非重叠区间问题的 C++ 实现 LeetCode435 题名为 **无重叠区间**(Non-overlapping Intervals),其目标是最小化移除区间的数量,使得剩下的区间不相互重叠。以下是该问题的一种高效解决方法。 #### 解决思路 此问题可以通过贪心算法来求解。核心思想是按照区间的结束时间进行升序排序,并尽可能多地保留那些最早结束的区间[^5]。这样可以为后续的区间留出更多空间,从而减少需要移除的区间数目。 具体步骤如下: 1. 对输入的区间列表按 `end` 值从小到大排序。 2. 初始化计数器变量用于记录所需删除的区间数以及上一个被选中的区间结束位置。 3. 遍历排序后的区间列表,如果当前区间的起始时间大于等于前一选定区间的结束时间,则更新最新结束时间为当前区间的结束时间;否则增加删除计数并跳过当前区间。 下面是基于上述逻辑编写的 C++ 实现: ```cpp #include <vector> #include <algorithm> using namespace std; class Solution { public: int eraseOverlapIntervals(vector<vector<int>>& intervals) { if (intervals.empty()) return 0; // Sort by end time of each interval. sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b) -> bool{ return a[1] < b[1]; }); int count = 0; // Number of removed intervals int prevEnd = intervals[0][1]; // End point of the first selected interval for (size_t i = 1; i < intervals.size(); ++i){ if (intervals[i][0] >= prevEnd){ // If no overlap with previous one, update 'prevEnd' prevEnd = intervals[i][1]; } else{ // Overlap exists, increment removal counter but do not change 'prevEnd'. ++count; } } return count; } }; ``` #### 复杂度分析 - 时间复杂度:O(n log n),其中主要开销来自于对区间数组的排序操作。 - 空间复杂度:O(1),除了存储输入数据外不需要额外的空间资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值