
机器学习
文章平均质量分 91
Joern-Lee
用双手给世界造幸福~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
开发者的AI认知指南:用大模型重新理解人工智能(下)
本系列为有编程基础的开发者提供独特的AI学习路径:借助大模型本身来理解人工智能。 四篇文章构建完整认知体系:AI全景概览、机器学习核心概念、深度学习技术原理、大模型应用范式。用开发者熟悉的编程概念和代码类比,避开复杂数学公式,重点关注概念理解、应用场景和技术选型原创 2025-07-22 22:17:03 · 816 阅读 · 0 评论 -
开发者的AI认知指南:用大模型重新理解人工智能(上)
本系列为有编程基础的开发者提供独特的AI学习路径:借助大模型本身来理解人工智能。 四篇文章构建完整认知体系:AI全景概览、机器学习核心概念、深度学习技术原理、大模型应用范式。用开发者熟悉的编程概念和代码类比,避开复杂数学公式,重点关注概念理解、应用场景和技术选型原创 2025-07-22 22:11:20 · 606 阅读 · 0 评论 -
机器学习算法:支持向量机SVM
摘要:支持向量机(SVM)是一种监督学习算法,通过最大化分类间隔寻找最优决策边界,其核心由少数"支持向量"决定。SVM使用超平面分割数据,间隔越大泛化能力越强。核技巧处理非线性问题,软间隔平衡分类误差。适用于图像分类、文本分类等高维场景,但训练耗时且参数选择依赖经验。优势在于高维表现和泛化能力,缺点包括可解释性较弱和大数据效率低。SVM如同"挑剔的砌墙师傅",依赖边界关键点并用核函数解决复杂问题。原创 2025-07-06 21:04:19 · 903 阅读 · 0 评论 -
机器学习算法-K近邻算法-KNN
摘要: K近邻(KNN)是一种基于实例的懒惰学习算法,通过计算样本间的距离(如欧氏距离)找到目标点的K个最近邻居,根据多数投票(分类)或平均值(回归)进行预测。其核心优势在于简单性、无需数据分布假设,但计算成本高,适合小规模低维数据(如推荐系统、医疗诊断)。生产中需优化计算效率(如KD树、近似近邻)和处理类别不平衡。相比逻辑回归,KNN更适应非线性模式但可解释性差,适用于快速验证或复杂局部特征场景,但在高维大数据或实时系统中表现受限。原创 2025-06-28 23:06:12 · 741 阅读 · 0 评论 -
机器学习算法:逻辑回归
逻辑回归是一种用于二分类的监督学习算法,通过Sigmoid函数将线性回归结果映射为0-1的概率值。其核心是使用交叉熵损失函数和梯度下降优化,评估指标包括准确率、AUC等。典型应用包括广告点击预测、金融风控和医疗诊断。生产中常用加权损失、正则化等方法改进。优点是概率输出和可解释性强,缺点是不适合复杂非线性关系。适用于需要概率解释的二分类问题,但不推荐用于高维稀疏数据或复杂非线性场景。逻辑回归凭借简单高效的特点,在金融、医疗等领域被广泛应用。原创 2025-06-02 11:12:21 · 1209 阅读 · 0 评论 -
机器学习算法:线性回归
线性回归是一种通过直线(或超平面)建模连续变量与特征间线性关系的统计方法,核心是最小化预测误差(MSE)。适用于房价预测、销售分析等场景,具有简单高效、可解释性强的优点,但对非线性数据敏感。实际应用中可通过多项式转换、正则化等方法优化,常用Python实现。作为基础模型,它在需要快速验证和解释性分析的工业场景中仍具重要价值。原创 2025-05-25 17:20:33 · 963 阅读 · 0 评论 -
机器学习极简入门:从基础概念到行业应用
本文详细介绍了机器学习的三种主要范式:有监督学习、无监督学习和强化学习,并对比了它们的特点和应用场景。有监督学习通过带标签的数据进行训练,适用于分类和回归问题;无监督学习则通过数据特征进行学习,常用于聚类和降维;强化学习则通过与环境的交互和奖励机制来优化决策。此外,文章还探讨了统计学与机器学习的区别,强调了机器学习在预测和决策中的优势,以及统计学在数据解释和假设检验中的重要性。最后,文章列举了机器学习在医疗、金融、零售、制造业等多个领域的实际应用案例,展示了其广泛的商业和社会价值。原创 2025-05-11 21:47:02 · 1222 阅读 · 0 评论 -
初探机器学习与深度学习
本文通过水果摊销量预测的案例,阐述了机器学习的核心逻辑,即通过数据训练模型进行预测,与传统编程的规则驱动模式形成对比。文章详细解析了机器学习的两大核心任务:分类(如疾病诊断)和回归(如房价预测),并类比前端开发中的类型定义与图表拟合。此外,文章深入探讨了深度学习自动提取特征的能力,突破了人工定义的局限,并梳理了人工智能从规则逻辑、专家系统、深度学习到大模型通才时代的四次技术跃迁。最后,文章通过时间轴图示,展示了人工智能发展的四个阶段,强调了每次跃迁的技术突破与局限。原创 2025-05-11 11:27:17 · 658 阅读 · 0 评论 -
协同过滤算法
今天要讲的主要内容是协同过滤,即Collaborative Filtering,简称CF。 Contents 1. 协同过滤的简介 2. 协同过滤的核心 3. 协同过滤的实现 4. 协同过滤的应用 1. 协同过滤的简介 关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一转载 2017-04-05 18:35:37 · 448 阅读 · 0 评论 -
欠拟合、过拟合及其解决方法
在我们机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了,这个问题也在学术界讨论的比较多。(之前搜了很多有的博客,讲的都不太全,因此我重新整理总结了一遍,同时加入了自己的理解,方便自己和后来人查阅) 首先就是我...转载 2017-04-05 18:54:39 · 311 阅读 · 0 评论 -
支持向量机通俗导论(理解SVM的三层境界)
支持向量机通俗导论(理解SVM的三层境界)转载自http://blog.csdn.net/v_july_v/article/details/7624837前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究转载 2017-02-28 16:57:24 · 359 阅读 · 0 评论