lintcode--15. 全排列

本文介绍了一种使用递归实现的数字列表全排列算法。该算法适用于不包含重复数字的列表,通过选定一个数字并进行交换来生成所有可能的排列组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

给定一个数字列表,返回其所有可能的排列。

注意事项

你可以假设没有重复数字。

样例

给出一个列表[1,2,3],其全排列为:

[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

代码

采用递归的方式求解。每次先选定一个字符,然后进行“若干次”交换,求出在选定这个字符的条件下,所有的全排列,并把字符“复位”再交换回来。至此,一趟全排列完成。第二趟,选定下一个字符,然后进行“若干次”交换,求出在选定这个字符的条件下,所有的全排列,并把字符“复位”再交换回来。

import java.util.*;
public class Solution {
    /*
     * @param nums: A list of integers.
     * @return: A list of permutations.
     */
    public List<List<Integer>> permute(int[] nums) {
        // write your code here
        List<List<Integer>> pers=new ArrayList<>();
        if(nums==null){
            return pers;
        }
        if(nums.length==0){
            pers.add(new ArrayList<>());
            return pers;
        }
        List<Integer> nums2=new ArrayList<>();
        for(int i=0;i<nums.length;i++){
            nums2.add(nums[i]);
        }
        core(pers,nums2,0);
        return pers;
    }
    void core(List<List<Integer>> pers,List<Integer> nums,int start){
        if(start==nums.size()-1){
            pers.add(new ArrayList<>(nums));
        }else{
            for(int i=start;i<nums.size();i++){
                swap(nums,i,start);
                core(pers,nums,start+1);
                swap(nums,start,i);
            }
        }

    }
    void swap(List<Integer> nums,int i,int j){
        int temp=nums.get(i);
        nums.set(i,nums.get(j));
        nums.set(j,temp);
    }
}
LintCode 1817 - 分享巧克力 是一道经典的算法题目,通常涉及动态规划、贪心算法等知识。这道题的核心思想是如何将一块巧克力分成若干块,并让每块满足一定的条件。 ### 题目概述: 假设有一块 `m x n` 的巧克力网格图,每个格子表示一小块巧克力。你需要将其分给 K 个人,每个人获得连续的一段巧克力(可以横着切或竖着切)。目标是使得所有人的巧克力总和的最大值尽可能小。 --- ### 解法思路: #### 方法一:二分查找 + 模拟验证 我们可以采用“二分查找”的策略来解决这个问题。核心在于设定一个范围 `[min_val, sum_of_chocolate]`,其中 `min_val` 表示单个巧克力单元的最小值,而 `sum_of_chocolate` 则是整个巧克力表的所有数值之和。 步骤如下: 1. **确定搜索区间**:左边界设为数组中的最大元素 (因为至少一人要拿到这个数),右边界设为总和 (即所有人都拿一的情况)。 2. **验证中间值是否可行**:对于当前猜测的最大值 mid,检查能否通过合理的切割分配方案,使得每个人的份额都不超过该值。 3. 根据结果调整左右边界直至找到最优解。 时间复杂度大约为 O(log(total_sum) * m * n) #### 示代码片段(Python版): ```python def minimizeMaxShare(chocoGrid, k): def canSplit(max_allowed): # 实现判断是否能按照规则分割函数 total = sum(map(sum,chocogrid)) low , high= max([max(row) for row in chocogrid]),total while(low<high): mid=(low+high)//2 if(canSplit(mid)): high=mid else: low=mid+1 return low ``` --- ### 关键点总结: - 使用了高效的二分查找技巧降低暴力枚举的时间开销; - 结合实际场景构建辅助判定功能完成对潜在解答的有效评估;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值