Opencv学习笔记(5)——自定义线性滤波,常见卷积算子,Canny边缘检测

本文介绍了Opencv中的自定义线性滤波、图像边缘处理,详细讲解了Sobel和Laplance算子,以及Canny边缘检测的应用。通过理论与实践相结合,展示了在图像处理中的卷积操作、边缘提取和二阶导数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Opencv学习笔记(5)——自定义线性滤波,常见卷积算子,Canny边缘检测

这一章我将为大家介绍Opencv中的自定义线性滤波、图像边缘处理、Sober算子和Laplance算子以及Canny边缘检测的相关应用。

一.自定义线性滤波

1.相关原理

1.卷积概念

  • 卷积是图像处理中一个操作,是kernel在图像的每个像素上的操作。
  • Kernel本质上一个固定大小的矩阵数组,其中心点称为锚点(anchor point)
    在这里插入图片描述
    2.卷积如何工作
    把kernel放到像素数组之上,求锚点周围覆盖的像素乘积之和(包括锚点),用来替换锚点覆盖下像素点值称为卷积处理。数学表达如下:
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
3.常见算子
Robert算子
在这里插入图片描述

Sobel算子
在这里插入图片描述
拉普拉斯算子
在这里插入图片描述

2.相关API

//filter2D方法
filter2D(
Mat src, //输入图像
Mat dst, // 模糊图像
int depth, // 图像深度32/8
Mat kernel, // 卷积核/模板
Point anchor, // 锚点位置
double delta // 计算出来的像素+delta
)
其中 kernel是可以自定义的卷积核

自定义卷积模糊
在这里插入图片描述

3.程序运行

#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
int threshold_value = 127;
int threshold_max = 255;
int type_value = 2;
int type_max = 4;
Mat src, dst, gray_src;
const char* output_title = "Robert_X";
void Threshold_Demo(int, void*);
int main(int argc, char** argv) {
   
   

	src = imread("D:/photos/2.jpg");

	if (!src.data) {
   
   
		std::cout << "could not find image...\n";
		return -1;
	}

	namedWindow("input_image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_title, CV_WINDOW_AUTOSIZE);
	imshow("input_image", src);
    //SobelX方向
	//Mat kernel_x = (Mat_<int>(3, 3) << -1, 0, 1,-2,0, 2,-1,0,1);//定义Sober卷积算子
	//filter2D(src, dst, -1, kernel_x, Point(-1, -1), 0, 0);
	//imshow("Robert_X", dst);
	//SobelY方向
	//Mat ying;
	//Mat kernel_y = (Mat_<int>(3, 3) << -1, -2, -1, 0,0,0,1,2,1);
	//filter2D(src, ying, -1, kernel_y, Point(-1, -1), 0, 0);
	//imshow("Robert_Y", dst);
	//拉普拉斯算子
	//Mat kernel_y = (Mat_<int>(3, 3) << 0, -1, 0, -1, 4, -1, 0, -1, 0);
	//filter2D(src, dst, -1, kernel_y, Point(-1, -1), 0, 0);
	//imshow("Laplace", dst);
	

	//自定义线性滤波
	int c = 0;
	int index = 0;
	int ksize = 5;
	while (true) {
   
   
		c = waitKey(500);//隔500ms模糊一下
		if ((char)c == 27) {
   
   
			break;//按ESC退出
		}
		ksize = 4 + (index % 5) * 2 + 1;//不断改变卷积算子的尺寸,动态循环
		Mat kernel = Mat::ones(Size(ksize, ksize), CV_32F) / (float)(ksize*ksize);//定义线性滤波算子
		filter2D(src, dst, -1, kernel, Point(-1, -1));
		index++;
		imshow("自定义线性滤波", dst);

	}

		waitKey(0);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值