45、卷积神经网络与手写数字分类实践

卷积神经网络与手写数字分类实践

1. 卷积神经网络基础

1.1 卷积层结构

卷积神经网络由一系列卷积层组成,每一层的输出作为下一层的输入。以下是一个三层卷积网络的示例:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(T,Q,L,R):::process --> B(E,N,M):::process
    B --> C(F,P):::process
    A -->|Layer 1| B
    B -->|Layer 2| C
    C -->|Layer 3| D(Output):::process

1.2 应用滤波器

以一个 12x12 的候选图像为例,应用第一层的滤波器(T、Q、L、R)。以 T 滤波器为例,其大小为 2x2,无填充,卷积后输出为 11x11 的特征图(T - map)。
操作步骤如下:
1. 将 T 滤波器的锚点置于其左上角。
2. 对 12x12 的候选图像进行扫描,若 T 滤波器与图像区域完全匹配,则标记为浅绿色,否则标记为粉色。

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(12x12 Input):::process --> B(T 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值