卷积神经网络与手写数字分类实践
1. 卷积神经网络基础
1.1 卷积层结构
卷积神经网络由一系列卷积层组成,每一层的输出作为下一层的输入。以下是一个三层卷积网络的示例:
graph LR
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
A(T,Q,L,R):::process --> B(E,N,M):::process
B --> C(F,P):::process
A -->|Layer 1| B
B -->|Layer 2| C
C -->|Layer 3| D(Output):::process
1.2 应用滤波器
以一个 12x12 的候选图像为例,应用第一层的滤波器(T、Q、L、R)。以 T 滤波器为例,其大小为 2x2,无填充,卷积后输出为 11x11 的特征图(T - map)。
操作步骤如下:
1. 将 T 滤波器的锚点置于其左上角。
2. 对 12x12 的候选图像进行扫描,若 T 滤波器与图像区域完全匹配,则标记为浅绿色,否则标记为粉色。
graph LR
classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
A(12x12 Input):::process --> B(T