给定长度为 N的数列 A,以及 M 条指令,每条指令可能是以下两种之一:
1 x y
,查询区间 [x,y]中的最大连续子段和,即 max(x≤l≤r≤y)。2 x y
,把 A[x] 改成 y。
对于每个查询指令,输出一个整数表示答案。
输入格式
第一行两个整数 N,M。
第二行 N个整数 A[i]。
接下来 M 行每行 3 个整数 k,x,y,k=1 表示查询(此时如果 x>y,请交换 x,y),k=2 表示修改。
输出格式
对于每个查询指令输出一个整数表示答案。
每个答案占一行。
数据范围
N≤500000,M≤100000
−1000≤A[i]≤1000
输入样例:
5 3
1 2 -3 4 5
1 2 3
2 2 -1
1 3 2
输出样例:
2
-1
代码:
/*
区间中的最大连续子段和 单点修改 区间查询
考虑由左右两个区间子区间tl,tr得到当前区间的最大子段和ans,则有
ans=max{tl的最大子段和,tr的最大子段和,跨越区间中点的最大子段和}
tl的最大子段和&tr的最大子段和递归求即可。
跨越中点的的最大子段和=tl右端点起的向左的最大后缀和和+tr左端点起的向右的最大前缀和
最大后缀和又可以从(右区间的最大后缀和)和(右区间的和加左区间的最大后缀和)两者中取较大者
所以线段树上每个节点维护四个信息:
1. lmax:左端点起的向右的最大子段和
2. rmax:右端点起的向左的最大子段和
3. tmax整个区间的最大子段和
4. sum:区间和
*/
#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define int long long
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0);cout.tie(0);
typedef unsigned long long ull;
typedef pair<int, int> PII;
int lowbit(int x) { return x & (- x); }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
const int mod = 1e9 + 7;
const int N = 500010;
int n, m;
int w[N];
struct Node
{
int l, r;
int sum, lmax, rmax, tmax;
} tr[N * 4];
// 函数复用 不止用于修改 查询也可以使用
void pushup(Node& u, Node& l, Node& r)
{
u.sum = l.sum + r.sum;
u.lmax = max(l.lmax, l.sum + r.lmax);
u.rmax = max(r.rmax, r.sum + l.rmax);
// 最大子段和要么完全在左右子区间内部,要么横跨中点
u.tmax = max(max(l.tmax, r.tmax), l.rmax + r.lmax);
}
void pushup(int u)
{
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
void build(int u, int l, int r)
{
if (l == r) tr[u] = {l, r, w[r], w[r], w[r], w[r]};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int x, int v)
{
if (tr[u].l == x && tr[u].r == x) tr[u] = {x, x, v, v, v, v};
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
Node query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r)
return tr[u];
else
{
int mid = tr[u].l + tr[u].r >> 1;
//三种互斥的情况
if ( r <= mid)return query(u << 1, l, r);
else if (l > mid) return query(u << 1 | 1, l, r);
else
{
auto left = query(u << 1, l, r);
auto right = query(u << 1 | 1, l, r);
Node res;
pushup(res, left, right); //函数复用 求一下当前点的属性值 然后返回 不做修改
return res;
}
}
}
signed main()
{
IOS;
cin >> n >> m;
for (int i = 1 ; i <= n; i++)
cin >> w[i];
build(1, 1, n);
int k, x, y;
while (m--)
{
cin >> k >> x >> y;
if (k == 1)
{
if ( x > y)
swap(x, y);
cout << query(1, x, y).tmax << endl;
}
else
modify(1, x, y);
}
return 0;
}