245. 你能回答这些问题吗

文章介绍了一个关于数列的问题,给定一个数列A和一系列指令,包括查询区间内的最大连续子段和以及修改数列中的元素。为了解决这个问题,文章提出了使用线段树的数据结构,线段树的每个节点存储了左端点开始的右最大子段和、右端点开始的左最大子段和、整个区间的最大子段和以及区间和。通过递归和更新操作,可以高效地处理查询和修改操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定长度为 N的数列 A,以及 M 条指令,每条指令可能是以下两种之一:

  1. 1 x y,查询区间 [x,y]中的最大连续子段和,即 max(x≤l≤r≤y)。
  2. 2 x y,把 A[x] 改成 y。

对于每个查询指令,输出一个整数表示答案。

输入格式

第一行两个整数 N,M。

第二行 N个整数 A[i]。

接下来 M 行每行 3 个整数 k,x,y,k=1 表示查询(此时如果 x>y,请交换 x,y),k=2 表示修改。

输出格式

对于每个查询指令输出一个整数表示答案。

每个答案占一行。

数据范围

N≤500000,M≤100000
−1000≤A[i]≤1000

输入样例:
5 3
1 2 -3 4 5
1 2 3
2 2 -1
1 3 2
输出样例:
2
-1
代码:
/*
区间中的最大连续子段和  单点修改 区间查询

考虑由左右两个区间子区间tl,tr得到当前区间的最大子段和ans,则有
ans=max{tl的最大子段和,tr的最大子段和,跨越区间中点的最大子段和}
tl的最大子段和&tr的最大子段和递归求即可。
跨越中点的的最大子段和=tl右端点起的向左的最大后缀和和+tr左端点起的向右的最大前缀和
最大后缀和又可以从(右区间的最大后缀和)和(右区间的和加左区间的最大后缀和)两者中取较大者
所以线段树上每个节点维护四个信息:
1. lmax:左端点起的向右的最大子段和
2. rmax:右端点起的向左的最大子段和
3. tmax整个区间的最大子段和
4. sum:区间和
*/
#include<bits/stdc++.h>
using namespace std;

#define x first
#define y second
#define int long long
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0);cout.tie(0);
typedef unsigned long long ull;
typedef pair<int, int> PII;

int lowbit(int x) { return x & (- x); }
int  gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
const int mod = 1e9 + 7;
const int N = 500010;

int n, m;
int w[N];
struct Node
{
    int l, r;
    int sum, lmax, rmax, tmax;
} tr[N * 4];

// 函数复用 不止用于修改 查询也可以使用
void pushup(Node& u, Node& l, Node& r)
{
    u.sum = l.sum + r.sum;
    u.lmax = max(l.lmax, l.sum + r.lmax);
    u.rmax = max(r.rmax, r.sum + l.rmax);
        // 最大子段和要么完全在左右子区间内部,要么横跨中点
    u.tmax = max(max(l.tmax, r.tmax), l.rmax + r.lmax);
}

void pushup(int u)
{
    pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}

void build(int u, int l, int r)
{
    if (l == r) tr[u] = {l, r, w[r], w[r], w[r], w[r]};
    else
    {
        tr[u] = {l, r};
        int mid = l + r >> 1;
        build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }
}

void modify(int u, int x, int v)
{
    if (tr[u].l == x && tr[u].r == x) tr[u] = {x, x, v, v, v, v};
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;

        if (x <= mid) modify(u << 1, x, v);
        else modify(u << 1 | 1, x, v);

        pushup(u);
    }
}

Node query(int u, int l, int r)
{
    if (tr[u].l >= l && tr[u].r <= r)
        return tr[u];
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;
       
        //三种互斥的情况
        if ( r <= mid)return query(u << 1, l, r);
        else if (l > mid) return query(u << 1 | 1, l, r);
        else
        {
            auto left = query(u << 1, l, r);
            auto right = query(u << 1 | 1, l, r);
            Node res;
            pushup(res, left, right); //函数复用 求一下当前点的属性值 然后返回 不做修改
            return res;
        }
    }
}

signed main()
{
    IOS;
    cin >> n >> m;

    for (int i = 1 ; i <= n; i++)
        cin >> w[i];

    build(1, 1, n);
    int k, x, y;

    while (m--)
    {
        cin >> k >> x >> y;

        if (k == 1)
        {
            if ( x > y)
                swap(x, y);

            cout << query(1, x, y).tmax << endl;
        }
        else
            modify(1, x, y);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值