【百面机器学习笔记——第七章 优化算法】

本文介绍了机器学习中的优化问题,包括有监督学习的损失函数,如0-1损失、Hinge、Logistic、交叉熵等,以及它们的特点。此外,讨论了机器学习优化的凸性和非凸性,如逻辑回归的凸优化和主成分分析的非凸优化。无约束优化方法包括梯度下降法、牛顿法等。还涉及梯度验证技巧,确保损失函数的梯度计算正确。最后,探讨了L1正则化与稀疏性,L1正则化如何通过产生稀疏权重矩阵促进特征选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

补充知识

  1. 机器学习算法=模型表征+模型评估+模型算法
  2. 不同的算法有着各自的表征和评估,而优化算法的任务就是在表征空间内找到评估指标最优的模型。
  3. 如今算法面对的问题大多是非凸的,关于凸/非凸的描述

01 有监督学习的损失函数

Q1: 列举有监督学习的损失函数及其特点
A1:
对于分类问题: 0-1损失、Hinge、Logistic、交叉熵
1)0-1损失: L 0 − 1 ( f , y ) = 1 f y < 0 L_{0-1}(f,y)=1_{fy<0} L01(f,y)=1fy<0 非凸、非光滑,难以直接优化
2)Hinge: L h i n g e ( f , y ) = m a x ( 0 , 1 − f y ) L_{hinge}(f,y)=max(0, 1-fy) Lhinge(f,y)=max(0,1fy),0-1损失的凸上界,但是在fy=1处不可导,不能用梯度下降法进行优化
3)Logistic: L l o g i s t i c ( f , y ) = l o g 2 ( 1 + e x p ( − f y ) ) L_{logistic}(f,y)=log_2(1+exp(-fy)) Llogistic(f,y)=log2(1+exp(fy)),处处光滑,可以梯度下降法优化,但是对所有样本点都有惩罚,因此对异常值相对更敏感
4)CE: L c r o s s − e n t r o p y ( f , y ) = − l o g 2 ( 1 + f y 2 ) L_{cross -entropy}(f,y)=-log_2(\frac{1+fy}{2}) Lcrossentropy(f,y)=log2(21+fy),也是0-1损失的光滑凸上界。
在这里插入图片描述

对于回归问题: 平方损失
1)平方损失: L s q u a r e ( f , y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值