百面机器学习笔记——第七章 优化算法
补充知识
- 机器学习算法=模型表征+模型评估+模型算法
- 不同的算法有着各自的表征和评估,而优化算法的任务就是在表征空间内找到评估指标最优的模型。
- 如今算法面对的问题大多是非凸的,关于凸/非凸的描述
01 有监督学习的损失函数
Q1: 列举有监督学习的损失函数及其特点
A1:
对于分类问题: 0-1损失、Hinge、Logistic、交叉熵
1)0-1损失: L 0 − 1 ( f , y ) = 1 f y < 0 L_{0-1}(f,y)=1_{fy<0} L0−1(f,y)=1fy<0 非凸、非光滑,难以直接优化
2)Hinge: L h i n g e ( f , y ) = m a x ( 0 , 1 − f y ) L_{hinge}(f,y)=max(0, 1-fy) Lhinge(f,y)=max(0,1−fy),0-1损失的凸上界,但是在fy=1处不可导,不能用梯度下降法进行优化
3)Logistic: L l o g i s t i c ( f , y ) = l o g 2 ( 1 + e x p ( − f y ) ) L_{logistic}(f,y)=log_2(1+exp(-fy)) Llogistic(f,y)=log2(1+exp(−fy)),处处光滑,可以梯度下降法优化,但是对所有样本点都有惩罚,因此对异常值相对更敏感
4)CE: L c r o s s − e n t r o p y ( f , y ) = − l o g 2 ( 1 + f y 2 ) L_{cross -entropy}(f,y)=-log_2(\frac{1+fy}{2}) Lcross−entropy(f,y)=−log2(21+fy),也是0-1损失的光滑凸上界。
对于回归问题: 平方损失
1)平方损失: L s q u a r e ( f , y