线性代数之——对称矩阵及正定性

AAA 是对称的时候,Ax=λxAx=\lambda xAx=λx 有什么特殊的呢?

1. 对称矩阵的分解

A=SΛS−1A = S\Lambda S^{-1}A=SΛS1
AT=(S−1)TΛSTA^T = (S^{-1})^T\Lambda S^{T}AT=(S1)TΛST

如果 AAA 是对称矩阵,也就是 A=ATA=A^TA=AT。对比以上两个式子,我们可以得到 S−1=STS^{-1}=S^TS1=ST,也就是 STS=IS^TS=ISTS=I特征向量矩阵 SSS 是正交的

对称矩阵具有如下的性质:

  • 它们的特征值都是实数
  • 可以选取出一组标准正交的特征向量

每个对称矩阵都可以分解为 A=QΛQ−1=QΛQTA=Q\Lambda Q^{-1}=Q\Lambda Q^TA=QΛQ1=QΛQTΛ\LambdaΛ 中为实数的特征值,S=QS=QS=Q 中为标准正交的特征向量。

  • 例 1

A=[1224]A = \begin{bmatrix} 1&2 \\2&4\end{bmatrix}A=[1224]

A−λI=[1−λ224−λ]A-\lambda I = \begin{bmatrix} 1-\lambda&2 \\2&4-\lambda\end{bmatrix}AλI=[1λ224λ]

det(A−λI)=(1−λ)(4−λ)−4=λ2−5λ=0det(A-\lambda I) = (1-\lambda)(4-\lambda)-4=\lambda^2-5\lambda=0det(AλI)=(1λ)(4λ)4=λ25λ=0

特征值和特征向量分别为:

λ1=0,x1=[2−1]\lambda_1 = 0,x_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}λ1=0x1=[21]

λ2=5,x2=[12]\lambda_2 = 5,x_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}λ2=5x2=[12]

特征向量 x1x_1x1 位于零空间,特征向量 x2x_2x2 位于列空间。有子空间基本定理可知,零空间正交于行空间,这里 AAA 是对称矩阵,所以列空间和行空间是一样的,因此两个特征向量是垂直的。而要得到标准正交向量,我们只需再除以它们各自的长度即可。所以有:

QΛQT=15[21−12][0005]15[2−112]=AQ\Lambda Q^T=\frac{1}{\sqrt5}\begin{bmatrix} 2&1 \\-1&2\end{bmatrix}\begin{bmatrix} 0&0 \\0&5\end{bmatrix}\frac{1}{\sqrt5}\begin{bmatrix} 2&-1 \\1&2\end{bmatrix} =AQΛQT=51[2112][0005]51[2112]=A

一个实对称矩阵的所有特征值都是实数。

证明

实数的共轭还是它本身,两个数积的共轭等于共轭的积,即 AB‾=AˉBˉ\overline{AB}=\bar A \bar BAB=AˉBˉ

(1)Ax=λx→Aˉxˉ=λˉxˉ→Axˉ=λˉxˉ\tag{1}Ax=\lambda x \to \bar A\bar x=\bar \lambda\bar x \to A\bar x=\bar \lambda\bar xAx=λxAˉxˉ=λˉxˉAxˉ=λˉxˉ(1)

对 (1) 进行转置可得

(2)xˉTAT=λˉxˉT→xˉTA=λˉxˉT\tag{2}\bar x^TA^T=\bar \lambda\bar x^T \to \bar x^TA=\bar \lambda\bar x^TxˉTAT=λˉxˉTxˉTA=λˉxˉT(2)

Ax=λxAx=\lambda xAx=λx 乘以 xˉT\bar x^TxˉT,将 (2) 式乘以 xxx,可得

(3)xˉTAx=λxˉTx\tag{3}\bar x^TAx=\lambda \bar x^TxxˉTAx=λxˉTx(3)

(4)xˉTAx=λˉxˉTx\tag{4}\bar x^TAx=\bar \lambda\bar x^TxxˉTAx=λˉxˉTx(4)

由于右边为向量长度的平方,因此不为零。对比 (3) 、(4) 两式可得 λˉ=λ\bar \lambda= \lambdaλˉ=λ,所以对称矩阵的特征值一定为实数。

一个实对称矩阵的所有特征向量(对应于不同特征值)是正交的。

证明

假设有 Ax=λ1xAx=\lambda_1 xAx=λ1xAy=λ2yAy=\lambda_2 yAy=λ2y,并且 λ1̸=λ2\lambda_1 \not = \lambda_2λ1̸=λ2,那么

(λ1x)Ty=(Ax)Ty=xTATy=xTAy=xTλ2y(\lambda_1 x)^Ty = (Ax)^Ty=x^TA^Ty=x^TAy=x^T\lambda_2y(λ1x)Ty=(Ax)Ty=xTATy=xTAy=xTλ2y

等式左边为 xTλ1yx^T\lambda_1yxTλ1y,等式右边为 xTλ2yx^T\lambda_2yxTλ2y,因为 λ1̸=λ2\lambda_1 \not = \lambda_2λ1̸=λ2,所以有 xTy=0x^Ty=0xTy=0,也即两个特征向量垂直。

  • 例 2

A=[abbc]A = \begin{bmatrix} a&b \\b&c\end{bmatrix}A=[abbc]

特征向量分别为:

x1=[bλ1−a]x_1 = \begin{bmatrix} b \\ \lambda_1-a \end{bmatrix}x1=[bλ1a]

x2=[λ2−cb]x_2 = \begin{bmatrix} \lambda_2-c \\ b \end{bmatrix}x2=[λ2cb]

x1Tx2=b(λ2−c)+b(λ1−a)=b(λ1+λ2−a−c)=0x_1^Tx_2=b(\lambda_2-c)+b(\lambda_1-a)=b(\lambda_1+\lambda_2-a-c)=0x1Tx2=b(λ2c)+b(λ1a)=b(λ1+λ2ac)=0

两个特征值的和为矩阵的迹,即对角线元素的和。

我们再来看 2×22×22×2 矩阵分解后的结果

A=QΛQT=[x1x2 ][λ1 λ2][x1Tx2]A=Q\Lambda Q^T = \begin{bmatrix} \\x_1& x_2 \\ \space \end{bmatrix}\begin{bmatrix} \lambda_1\\ \space & \lambda_2 \end{bmatrix}\begin{bmatrix} \quad x_1^T\quad\\ \quad x_2 \quad \end{bmatrix}A=QΛQT=x1 x2[λ1 λ2][x1Tx2]

A=λ1x1x1T+λ2x2x2TA=\lambda_1 x_1x_1^T+\lambda_2 x_2x_2^TA=λ1x1x1T+λ2x2x2T

扩展到 nnn 维的情况,A=∑inλixixiTA=\sum_i^n\lambda_i x_ix_i^TA=inλixixiT,其中每一个 xixiTx_ix_i^TxixiT 都是投影矩阵,P=xxTxTxP=\frac{xx^T}{x^Tx}P=xTxxxT,特征向量的长度为 1,所以分母略去了。也就是说,对称矩阵是其特征向量投影矩阵的线性组合

2. 实矩阵的复特征向量

Ax=λx→Aˉxˉ=λˉxˉ→Axˉ=λˉxˉAx=\lambda x \to \bar A\bar x=\bar \lambda\bar x \to A\bar x=\bar \lambda\bar xAx=λxAˉxˉ=λˉxˉAxˉ=λˉxˉ

针对对称矩阵,其特征值和特征向量都是实的。但是,非对称矩阵非常容易得到虚的特征值和特征向量。在这种情况下,Ax=λxAx=\lambda xAx=λxAxˉ=λˉxˉA\bar x=\bar \lambda\bar xAxˉ=λˉxˉ 是不同的,我们得到了一个新的特征值 λˉ\bar \lambdaλˉ 和新的特征向量 xˉ\bar xxˉ

针对实矩阵,复数的特征值和特征向量总是一对共轭对。

3. 特征值和主元

矩阵的主元和特征值是非常不同的,主元是通过消元得到的,而特征值是通过求解 det(A−λI)=0det(A-\lambda I)=0det(AλI)=0 得到的。到目前为止,它们唯一的联系就是:所有主元的乘积等于所有特征值的乘积,都等于矩阵的行列式值

针对对称矩阵,还有一个隐藏的关系:主元的符号和特征值的符号一致,也就是正的主元个数等于正的特征值的个数

证明

对称矩阵可以被分解为 A=LDLTA=LDL^TA=LDLT 的形式。

LLL 变成 III 的时候,LDLTLDL^TLDLT 就变成了 IDITIDI^TIDIT,也就是由 AAA 变成了 DDDAAA 的特征值为 4 和 -2,DDD 的特征值为 1 和 -8。当 LLL 中左下角的元素从 3 变到 0 的时候, LLL 就变成了 III。在这个过程中,如果特征值符号发生改变的话,那肯定会有一个中间时刻,这时候特征值为 0,也就意味着矩阵是奇异的。但是最后的矩阵 DDD 一直有两个主元,始终是可逆的,从来不可能是奇异的,因此特征值的符号不会发生改变。

特别地,所有的特征值都大于零,也就是所有的主元都大于零,这种情况下,矩阵就称之为是正定的

4. 重复的特征值

当没有重复特征值的时候,特征向量一定是线性不相关的,这时候矩阵一定可以被对角化。但是一个重复的特征值可能会导致特征向量的缺乏,这有些时候会发生在非对称矩阵上,但是对称矩阵一定会有足够的特征向量来进行对角化

证明

获取更多精彩,请关注「seniusen」!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值