Multi-UAV|多无人机、多场景路径规划MATLAB

无人机(Unmanned Aerial Vehicle,UAV) 是一种无需机载驾驶员的半自主飞行器,由于其灵活度高、机动性强等特点,目前已广泛应用于民用和军用领域,如救援、农业、在这里插入图片描述
输电线路巡检等。但在实际应用中,单个UAV难以应对任务点分散、耗时长、或者在每个任务点的不一致的需求。
无人机机群由于具有较好的鲁棒性和较低的成本,常被用来通过协作来解决该问题。在无人机群协作中,路径规划是最关键的问题之一。无人机生成航迹质量受到安全性和能量消耗的双重影响,如何找到一条安全合理的从出发位置到目的位置的最短路径以避免潜在的威胁成为主要关注的问题。
因此本文KAU针对多无人机路径规划问题提出解决代码及理论,后续也会更新更为完善的多目标解决方案,欢迎关注~

00 文章目录

1 路径规划算法简述
2 航迹规划问题描述
3 代码目录
4 仿真实验
5 源码获取

01 路径规划算法简述

研究者们在过去几十年对路径规划问题进行了大量有价值的研究,目前已经出现了各式各样的算法:
 数学规划法,如混合整数线性规划、非线性规划和动态规划等[1-3],这些算法适用于解决小规模的路径规划问题,若问题规模增大,则其计算时间将呈指数级增长。
 人工势场和DWA法等,这类算法实时性好,但其中,人工势场当目标产生的引力和障碍物产生的斥力在某些势点上相等时,这种方法容易陷入局部最优[4-5] ,其解的质量取决于势场的建立。而DWA法在障碍物密集复杂环境具有一定的局限性,容易出现避障过度或避障失败的问题。
 基于图论的算法,如A*、RRT算法等[6,7]。这类算法能有效地找到最优路径,而其性能取决于搜索空间的划分。因此,当搜索空间非常复杂时,这种方法在路径规划中总是需要很长的执行时间。
 智能算法,如GA、ACO和PSO等[8-10],这类算法可以在有限的计算时间内为无人机规划满足指定要求的可飞行路径。由于计算智能算法具有简单、计算成本低、性能好等优点,近年来被广泛应用于复杂路径规划问题。但不同的优化算法其寻优性能不同,应用于不同的场景或约束时,其效果不尽相同,因此也激励着各类改进算法的出现。

02 航迹规划问题描述

我们假设这是一个已知的环境。环境的一个示例如下图所示。采用绝对笛卡尔坐标系,便于描述运动环境。除了单无人机需要考虑的威胁物、飞行转弯/高度/长度等成本代价,对于多无人机协同作战,如何避免相互碰撞也是重要问题。因此该问题的目标是在出发位置、目的位置以及环境因素和威胁都固定的情况下,引导多架无人机以最小的成本代价飞向不同的目的位置,同时避免碰撞和威胁。
起始点和目标点分别定义为S和G;威胁源为雷达、火炮和禁飞区。雷达和火炮分别以绿色和红色虚线圆圈的形式表示。这些虚线圆圈被定义为无人机有一定概率受到攻击的威胁区域,无人机飞出该区域时不受攻击。红色虚线矩形代表禁飞区,在禁飞区内禁止无人机飞行。无人机航迹优化除了最小的长度成本外,飞行路径还需要得到最小的高度成本和最小的来自雷达和火炮的威胁代价,满足偏航角、爬升角和禁飞区的约束函数。
在这里插入图片描述

1.1 路径表示及平滑
(1)路径表示
本文的研究中,KAU假设无人机飞行速度固定,威胁区域位置已知。我们为每架无人机设置了航迹控制点,每架无人机的航路由起始位置S、目的地位置G以及S和G之间的N-2个航路点组成,航路点均匀分布。无人机i的航路点j的坐标为:
在这里插入图片描述

其中,i={1,2,…,I};j={1,2,…,N-2}。I为无人机总数。
由此可知,无人机i的完整路径可表示为:
在这里插入图片描述

(2)路径平滑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值