Tensorflow学习——Attention

本文介绍了TensorFlow库中tf.contrib.seq2seq.LuongAttention模块的Global Attention原理,该模块基于Effective Approaches to Attention-based Neural Machine Translation论文。Global Attention允许在encoder的所有信息中进行Attention操作,通过decoder的当前隐藏状态和encoder的时序特征向量计算权重,以确定对解码过程最有影响的部分。文章详细阐述了打分函数的三种类型,包括 additive、multiplicative 和 dot-product 方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.contrib.seq2seq.LuongAttention

init(
num_units,
memory,
memory_sequence_length=None,
scale=False,
probability_fn=None,
score_mask_value=float(‘-inf’),
name=’LuongAttention’
)

参数 含义
num_units 在encoder阶段产生了多个特征向量,每个特征向量的大小
memory 一个batch里,encoder阶段产生的所有的特征向量,在RNNencoder中,维数为[batch_size, max_time, num_units],即encoder阶段产生了max_time个大小为num_units的特征向量
memory_sequence_length 记录memory中 的特征向量的长度,维数是[batch_size,],令memory中超过memory_sequence_length的值为0
scale 是否进行scale
probabili
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值