轻松理解 Kubernetes 的核心概念

本文深入浅出地介绍了Kubernetes的六大核心概念:Node、Cluster、PersistentVolumes、Container、Pod和Deployment,以及Ingress的使用,帮助读者快速理解Kubernetes的架构与运作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kubernetes 迅速成为云环境中软件部署和管理的新标准。

与强大的功能相对应的是陡峭的学习曲线。

本文将提供 Kubernetes 的简化视图,从高处观察其中的重要组件,以及他们的关联。

硬件

(1)Node 节点

Node(节点)是计算资源的最小单位,表示集群中单台计算机。

可能是数据中心里面的计算机,也可能是云中的虚拟机,还可能是其他的东西。

Node 就是一个抽象层,我们不必关注某台机器的特性,只需要简单的视为我们可以利用的 CPU  和 RAM 资源。

(2)Cluster 集群

把多个 Node 集中到一起,形成功能强大的机器。

把应用部署到 Cluster 中时,可以智能为你分配具体的工作节点。

如果集群中的节点发生变化,例如添加或者删除,Cluster 会自动重新分配工作,我们无需关心代码是在哪个节点上运行。

(3)Persistent Volumes 持久型数据卷

应用不是运行在特定的节点上的,随时可能转移到其他节点上,所以,应用不能把数据保存到所在节点的文件系统中。

为了永久存储数据,kubernetes 提供了 Persistent Volumes ,就像一个插件一样,挂载到集群中,不与特定的节点绑定。

2. 软件

(1)Container 容器

Kubernetes 上运行的程序被打包为 Linux 容器。

容器化使您可以创建独立的 Linux 执行环境。任何程序及其所有依赖项,都可以捆绑成一个文件,然后在网上共享。

任何人都可以下载容器,通过很少的配置即可运行。

容器的操作可以通过编程完成,从而形成功能强大的 CI/CD 管道。

可以将多个程序添加到一个容器中,但最好还是一个程序一个容器,这样易于部署、查找问题。

(2)Pod

Kubernetes 不会直接运行容器,而是将一个或多个容器包装到称为 pod 的更高级别的结构中。

同一个 Pod 中的容器共享资源和网络,可以自由的相互沟通。

Pod 是 Kubernetes 中的复制单位,当你的应用需要扩展时,可以复制新的 Pod,部署到集群中。

通常都会运行多个 Pod 副本,以实现负载均衡和故障容错。

(3)Deployment 部署

尽管 Pod 是 Kubernetes 中计算的基本单位,但不会直接在集群上启动它们,而是通过一个抽象层(Deployment)进行管理。

Deployment 的主要目的是声明一次应该运行多少个 Pod 副本。

当一个 Deployment 添加到集群中以后,它就会自动启动所需数量的 Pod,并对其监控,如果某个 Pod 挂了,Deployment 会自动重新创建一个新的。

使用 Deployment,你就不用手动处理 Pod 了,你只需要说明系统应该是什么样的,Deployment 就会自动帮你管理。

(4)Ingress 入口

通过上述的概念,已经可以创建一个包含多个 Node 的 Cluster,通过 Deployment 启动并管理多个 Pod(Pod 中是 Container,Container 里是你的 App)。

现在的问题是:外部如何访问你的应用呢?

默认情况下,Pod 和外界之间是隔离的。如果要与 Pod 中运行的服务进行通信,则必须打开一个通信通道,就是 Ingress(入口)。

小结

内容概要:本文档详细介绍了基于弹性架构搜索(Elastic Architecture Search, EAS)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性,降低计算资源消耗,实现模型轻量化。通过MATLAB实现,项目采用Transformer编码器的多头自注意力机制,结合EAS的弹性权重共享和分阶段搜索策略,解决了高维多变量时间序列的复杂依赖建模、架构搜索计算资源需求高、模型过拟合、多步预测误差积累、数据异构性与缺失值处理、复杂模型训练收敛等挑战。最终,项目构建了一个高度模块化和可扩展的系统设计,适用于智能制造、能源管理、智慧交通等多个工业场景。 适合人群:具备一定编程基础,对时间序列预测、深度学习及MATLAB有一定了解的研发人员和研究人员。 使用场景及目标:①自动化优化多变量时间序列预测模型结构,提升预测精度与鲁棒性;②降低计算资源消耗,实现模型轻量化;③实现高度模块化与可扩展的系统设计,促进人工智能在工业领域的深度应用;④提供科研与教学的典范案例与工具,探索深度学习架构搜索在时序预测的前沿技术;⑤促进多变量时序数据融合与异质信息处理能力,推动MATLAB深度学习工具箱的应用与扩展。 其他说明:项目不仅聚焦于模型性能提升,更注重计算资源节约和应用落地的可行性。借助弹性架构搜索自动化调参,减少人工经验依赖,加快模型迭代速度,降低开发门槛。结合Transformer编码器的表达能力,显著改善多变量时间序列预测中的长期依赖捕捉和异质数据融合问题,为各类时间序列分析任务提供一种全新的解决方案。项目通过详细的代码实现和注释,帮助用户理解Transformer机制与弹性架构搜索如何协同工作,实现多变量时间序列预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值