YOLOv12安装部署

一、安装anaconda

        地址,下载完成后,直接默认安装即可。

二、配置源

2.1 设置清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
2.2 设置bioconda
conda config --add channels bioconda

conda config --add channels conda-forge
2.3 设置搜索时显示通道地址
conda config --set show_channel_urls yes

三、创建虚拟机

3.1 新建虚拟机
conda create -n yolov12 python=3.8

3.2 切换虚拟机

conda activate yolov12

四、安装yolov12

pip install ultralytics

五、验证安装成功

yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

### YOLOv11 安装部署教程 #### 准备环境 对于准备运行YOLOv11的开发环境而言,首先需确保已安装合适的PyTorch版本。访问[PyTorch官方网站](https://pytorch.org/)并依据本地CUDA版本挑选相匹配的PyTorch配置[^3]。 假设当前使用的CUDA版本为12.6,则可以选择向下兼容至12.4版的CUDA支持,并执行如下命令来完成PyTorch及其依赖项的安装: ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124 ``` #### 获取YOLOv11源码 获取YOLOv11的具体实现代码是必要的前置步骤之一。虽然官方并未提供直接针对YOLOv11的Git仓库链接,在此可以推测操作流程类似于其他YOLO版本的做法。如果存在特定于YOLOv11的GitHub地址或其他托管服务上的存储库,应当通过`git clone`指令克隆该仓库到本地环境中。然而,具体URL应由实际发布的资源决定;这里仅给出一般性的指导框架[^1]。 #### 配置模型文件 在成功下载YOLOv11项目之后,进入对应的目录下继续后续设置工作。这一步骤可能涉及调整预训练权重路径、修改数据集配置文件等内容以适应具体的使用场景需求。由于缺乏确切的YOLOv11资料指向,这部分细节建议参照所获得的实际文档说明来进行相应处理。 #### 跨平台部署策略 考虑到不同应用场景下的性能要求差异较大,因此推荐采用适合目标硬件特性的推理引擎和优化工具链组合方案。例如,在嵌入式平台上可利用TensorRT加速神经网络计算效率;而在服务器端则借助cuDNN提升GPU利用率等措施。这些技术手段有助于提高YOLOv11在各类终端侧的表现效果。 #### 测试验证过程 最后,在完成了上述准备工作以后,务必进行全面的功能性和稳定性测试。可以通过编写简单的Python脚本调用检测接口,传入图像样本作为输入参数,观察输出结果是否符合预期标准。此外还可以记录整个推断过程中消耗的时间成本指标用于评估整体表现水平。 ```python from yolov11 import detect_objects # 假设这是加载YOLOv11预测函数的方式 image_path = 'path/to/test/image.jpg' results = detect_objects(image=image_path) for result in results: print(f'Object detected: {result["label"]}, Confidence score: {result["confidence"]:.2f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值