深度学习论文: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs及其PyTorch实现

深度学习论文: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs及其PyTorch实现
YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs
PDF: https://arxiv.org/pdf/2110.13713.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

  • 提出了一种新的迁移学习backbone采用的灵感是来自不同任务的转换信息流的变化,旨在补充特征交互模块,并提高准确性和推理速度的各种边缘GPU设备上的可用性。
  • 提出了一种新的边缘GPU友好模块RFCR,用于多尺度特征交互。

2 YOLO-ReT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值