深度学习论文: FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data

深度学习论文: FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data
FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data
PDF: https://arxiv.org/pdf/2411.16110
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

在这里插入图片描述
尽管异常检测领域的主流研究方向倾向于采用一类分类方法,但在实际的工业生产环境中,训练数据往往因标注错误或新产品、翻新品的标签缺失而遭受噪声污染。针对这些挑战,本文创新性地

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值