【零基础学机器学习 13】 混淆矩阵 最佳指南以及代码实战

本文详细介绍了混淆矩阵的概念及其在评估分类模型性能中的作用,包括真正例、假正例、真负例和假负例的定义。通过混淆矩阵,可以计算出准确率、精确率、召回率、F1-Score等多个关键指标。文章还提供了一个基于Python的心脏病预测案例,展示了如何计算这些指标,并讨论了查全率、召回率、查准率和精确率的异同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👨‍💻 作者简介:程序员半夏 , 一名全栈程序员,擅长使用各种编程语言和框架,如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主. 你可以在各个平台找到我!
🏆 本文收录于专栏: 零基础学机器学习
🔥 专栏介绍: 本专栏将帮助您了解机器学习、其工作原理以及如何使用它。本教程包含以下内容:监督和无监督学习、线性回归、随机森林算法、朴素贝叶斯分类器、K-means聚类算法等等等基础学习基础知识,以及各种实战案例。

43592febe975c9edf02281a1cbffcee3

在机器学习中,分类用于将数据划分为不同的类别。但在清理、预处理数据并训练我们的模型之后,我们如何知道分类模型的性能是否良好呢?这就是混淆矩阵的作用。

基本布局

什么是混淆矩阵

分类模型具有多个类别输出。大多数误差度量将计算模型的总误差,但我们无法找到