YOLOv10目标检测创新改进与实战案例专栏
专栏链接: YOLOv10 创新改进有效涨点
专栏介绍
💖💖💖目前已有 60+ 篇,至少更新150+,其中包括注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计。
重要🔥🔥🔥:订阅专栏的的小伙伴,可以私信博主,加入YOLOv10改进交流群,获取完整的可运行代码:QQ:3880513775
🍗🍗🍗 专栏涨价趋势 99 -> 159-> 199,越早订阅越划算
本专栏不仅关注最新的研究成果,还会持续更新和回顾那些经过实践验证的改进机制。
包括:注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计等改进思路,帮助您实现全方位的创新。
适用场景与任务
专栏内容适用于各种场景,包括但不限于:
- 红外成像
- 小目标检测
- 工业缺陷检测
- 医学影像
- 遥感目标检测
- 低对比度场景
目录
注意力机制
主干
标题 | 链接 | 改进点 |
---|---|---|
【YOLOv10改进- Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构 | https://blog.csdn.net/shangyanaf/article/details/140309058 | 主干 |
【YOLOv10改进】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV10参数 | https://blog.csdn.net/shangyanaf/article/details/140335412 | 主干 |
【YOLOv10改进- Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合 | https://blog.csdn.net/shangyanaf/article/details/140307198 | 主干 |