【YOLO11改进 - C3k2融合】C3k2融合DynamicConv(动态卷积)二次创新,有效提升网络模型的表征能力且不增加模型深度和宽度

YOLOv11目标检测创新改进与实战案例专栏

文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv11目标检测创新改进与实战案例

在这里插入图片描述

介绍

image-20240602183130741

摘要

大规模视觉预训练显著提高了大型视觉模型的性能。然而,我们观察到现有的低FLOPs模型无法从大规模预训练中受益。在本文中,我们引入了一种新的设计原则,称为ParameterNet,旨在在大规模视觉预训练模型中增加参数数量的同时,将FLOPs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值