KNN算法实现&knn完成iris数据集分类

最近邻规则分类KNN

例子
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
欧氏距离
在这里插入图片描述
K值选取
在这里插入图片描述
算法缺点
在这里插入图片描述
算法实现

import matplotlib.pyplot as plt
import numpy as np
import operator

# 已知分类的数据
x1 = np.array([3,2,1])
y1 = np.array([104,100,81])
#上面是爱情片的坐标,下面是动作片的坐标
x2 = np.array([101,99,98])
y2 = np.array([10,5,2])
scatter1 = plt.scatter(x1,y1,c='r')
scatter2 = plt.scatter(x2,y2,c='b')

# 未知数据
x = np.array([18])
y = np.array([90])
scatter3 = plt.scatter(x,y,c='k')


#画图例
plt.legend(handles=[scatter1,scatter2,scatter3],labels=['labelA','labelB','X'],loc='best')

plt.show()

在这里插入图片描述

# 已知分类的数据
x_data = np.array([[
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值