最近邻规则分类KNN
例子
欧氏距离
K值选取
算法缺点
算法实现
import matplotlib.pyplot as plt
import numpy as np
import operator
# 已知分类的数据
x1 = np.array([3,2,1])
y1 = np.array([104,100,81])
#上面是爱情片的坐标,下面是动作片的坐标
x2 = np.array([101,99,98])
y2 = np.array([10,5,2])
scatter1 = plt.scatter(x1,y1,c='r')
scatter2 = plt.scatter(x2,y2,c='b')
# 未知数据
x = np.array([18])
y = np.array([90])
scatter3 = plt.scatter(x,y,c='k')
#画图例
plt.legend(handles=[scatter1,scatter2,scatter3],labels=['labelA','labelB','X'],loc='best')
plt.show()
# 已知分类的数据
x_data = np.array([[