【第4章:循环神经网络(RNN)与长短时记忆网络(LSTM)——4.1 RNN的基本结构与工作原理】

在这里插入图片描述

在深度学习的浩瀚宇宙中,循环神经网络(RNN)和长短时记忆网络(LSTM)犹如两颗璀璨的星辰,照亮了处理序列数据的道路。无论是自然语言处理、时间序列预测,还是语音识别,这些模型都展现出了非凡的能力。今天,我们就来一场深度探索,揭开RNN与LSTM的神秘面纱,看看它们的基本结构与工作原理究竟是怎样的。

二、循环神经网络(RNN)

1. 基本结构

RNN的基本框架由输入层、隐藏层和输出层构成。但与传统的前馈神经网络(FNN)不同,RNN的隐藏层之间建立了循环连接。这意味着,隐藏层的输出不仅传递给下一层,还会反馈回当前层的输入。这种独特的循环结构,让RNN能够处理序列数据,记住过去的信息,并对未来的信息进行预测。

想象一下,你正在读一篇文章,RNN就像你的大脑一样,能够记住之前读过的内容,并根据这些信息来理解接下来的文字。

2. 工作原理

RNN的工作原理可以用以下步骤来概括:

  • 输入序列:将序列数据按时间顺序逐一输入到网络中。
  • 隐藏层计算:在每个时间步,隐藏层会接收当前时间步的输入和上一时间步的隐藏状态,通过激活函数(如tanh)计算出当前时间步的隐藏状态。
  • 输出计算:根据当前时间步的隐藏状态,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值